

Faculty of Science

Department of Mathematics

PD Dr. Martin Kell

Limits of Spaces

Summer semester 2019

EBERHARD KARLS

JNIVERSITÄT

TUBINGEN

15.04.2019

Exercise sheet 1

Exercise 1

(Finite metric spaces - 2 points) Let $\mathcal{X}_{n,D} = \{(M,d) \mid |M| \leq n, \text{diam } M \leq D\}$. Define a topology τ on \mathcal{X}_n that makes (\mathcal{X}_n, τ) into a topological space.

Can you give a metric on $\mathcal{X}_{n,D}$ making it into a compact metric space? (+2 points)

Exercise 2

(Menger convexity - 2 points) Show that a complete metric space is geodesic if and only if for all distinct $x, y \in M$ there is a $z \in M \setminus \{x, y\}$ such that d(x, z) + d(z, y) = d(x, y).

Exercise 3

(Hopf–Rinow - 3 points) Let (M, d) be a metric space. Show that the following statements are equivalent:

- 1. (M, d) is a proper length space
- 2. (M, d) is locally compact, geodesic and whenever $\gamma : [0, 1) \to M$ is a geodesic then γ can be completed to a geodesic on all of [0, 1].

Exercise 4

(Branching geodesics - 3 points) Assume for four distinct points $x, y, z, m \in M$ it holds

$$\begin{split} &d(x,m)+d(m,y)=d(x,y)\\ &d(x,m)+d(m,z)=d(x,z). \end{split}$$

Show that there are geodesics $\gamma, \eta : [0, 1] \to M$ and a $t_0 \in (0, 1)$ such that $\gamma_0 = \eta_0 = x, \ \gamma_1 = y, \ \eta_1 = z$ and

 $\gamma\big|_{[0,t_0]} \equiv \eta\big|_{[0,t_0]}.$