

Faculty of Science

Department of Mathematics

06.05.2019

PD Dr. Martin Kell

Limits of Spaces

Summer semester 2019

EBERHARD KARLS

UNIVERSITÄT

TUBINGEN

Exercise sheet 2

Exercise 5

(Hopf–Rinow - 3 points) Let (M, d) be a metric space. Show that the following statements are equivalent:

- 1. (M, d) is a proper length space
- 2. (M, d) is locally compact, geodesic and whenever $\gamma : [0, 1) \to M$ is a geodesic then γ can be completed to a geodesic on all of [0, 1].

Exercise 6

(2 points) Let ω be an ultrafilter on \mathbb{N} and assume $(a_n), (b_n)$ are non-negative sequences. Show the following that the ulterlimit of non-negative sequences is additive. Give an example for which the ultralimit is non-additive if non-negativity is dropped.

Exercise 7

(3 points) Let (X, d) be a metric space and $x_0 \in X$. Let (X_{∞}, d_{∞}) be the pointed ultralimit of the constant sequence $((X, d))_{n \in \mathbb{N}}$. Show that if (X_{∞}, d_{∞}) is proper then it is isometric to (X, d).

Exercise 8

(2 points) Let (X, d) be a metric space. An ϵ -spanning is a set $A \subset X$ such that for all $y \in X$ there is $x \in A$ with $d(x, y) \leq \epsilon$. An ϵ -separated set is a set $B \subset X$ such that for all $x, y \in B$ it holds $d(x, y) \geq \epsilon$.

Denote by $N(\epsilon)$ the minimal cardinality of an ϵ -spanning set in (X, d) and by $M(\epsilon)$ the maximal cardinality of an ϵ -separated set. Show that $N(\epsilon)$ and $M(\epsilon)$ are comparable for all $\epsilon > 0$ independent of (X, d), i.e. there is a C > 1 such that

 $C^{-1}N(\epsilon) \le M(\epsilon) \le CN(\epsilon).$