

Mathematisch-Naturwissenschaftliche Fakultät

**Fachbereich Mathematik** 

Dr. Martin Kell Felix Dietrich

# **Optimaler Transport**

## Wintersemester 16/17

17.10.2016

# Übungsblatt 10

### Aufgabe 30

- (a) Sei  $(x_n)_{n\in\mathbb{N}}$  eine Folge, die nicht konvergiert. Zeigen Sie, dass  $\{x_n\}_{n\in\mathbb{N}}$  abgeschlossen ist.
- (b) Gilt  $x_n \to x$ , dann ist  $\{x_n\}_{n \in \mathbb{N}} \cup \{x\}$  (überdeckungs)kompakt.

### Aufgabe 31

Für einen lokal kompakten, topologischen (Hausdorff) Raum  $(X, \tau)$ , sei  $\tilde{X} = X \cup \{\infty\}$  die Ein-Punkt-Kompaktifizierung mit Topologie

$$\tilde{\tau} = \tau \cup \{U \cup \{\infty\} \mid U = X \setminus K, K \text{ kompakt in } X\}.$$

Zeige Sie bitte, dass folgende Aussagen gelten

- (a)  $\tilde{\tau}$  ist eine Topologie auf  $\tilde{X}$ .
- (b) Die natürliche Einbettung  $i: X \hookrightarrow \tilde{X}$  ist stetig und injektiv.
- (c)  $\tilde{X}$  ist (überdeckungs)kompakt (Hinweis: Ist K kompakt in X, dann ist i(K) kompakt in X).
- (d) Eine Folge  $(x_n)_{n\in\mathbb{N}}$  konvergiert in X genau dann, wenn die Folge  $(i(x_n))_{n\in\mathbb{N}}$  nicht gegen  $\infty$  konvergiert.

#### Aufgabe 32

Sei (M,d) beschränkt-kompakt und  $\tilde{M}$  die Ein-Punkt-Kompaktifizierung. Man kann zeigen, dass es eine Metrik  $\tilde{d}$  auf  $\tilde{M}$  gibt mit Topologie  $\tau_{\tilde{d}} = \tilde{\tau}$ . Sei  $(\mu_n)_{n \in \mathbb{N}}$  eine Folge von Wahrscheinlichkeitsmaßen auf M. Zeigen Sie folgende Aussagen:

- (a)  $\{i_*\mu_n\}_{n\in\mathbb{N}}$  ist gleichmäßig straff in  $\mathcal{P}(\tilde{M})$ .
- (b)  $\{\mu_n\}_{n\in\mathbb{N}}$  ist gleichmäßig straff in  $\mathcal{P}(M)$ , genau dann wenn jeder Häufungspunkt  $\tilde{\mu}$  von  $(i_*\mu_n)_{n\in\mathbb{N}}$  gilt  $\tilde{\mu}(\{\infty\}) = 0$ . Anders ausgedrückt, die Folge  $(\mu_n)$  ist *nicht* konvergent, wenn sie Masse verliert.

## Aufgabe 33

Zeigen Sie für  $\mu, \nu \in \mathcal{P}(M)$  gilt

$$\sup_{A \in \mathcal{B}} |\mu(A) - \nu(A)| = \inf_{\pi \in \Pi(\mu, \nu)} \int \chi_{M \times M \setminus \Delta}(x, y) d\pi(x, y),$$

wobei

$$\chi_{M \times M \setminus \Delta}(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y. \end{cases}$$

Zeigen Sie außerdem, dass

$$d_{TV}(\mu, \nu) = \sup_{A \in \mathcal{B}} |\mu(A) - \nu(A)|$$

eine Metrik auf  $\mathcal{P}(M)$  ist. Diese wird die Totale-Variationsmetrik genannt. Sind die Topologien  $\tau_{d_{LP}}$  und  $\tau_{d_{TV}}$  äquivalent, d.h. gilt  $d_{LP}(\mu_n,\mu) \to 0$  genau dann, wenn  $d_{LP}(\mu_n,\mu) \to 0$ ? Zeigen Sie diese Aussage oder geben Sie ein Gegenbeispiel. Betrachte dazu die Folge  $\mu_n = \frac{1}{\lambda^n(B_{\frac{1}{2}}(\mathbf{0}))} \lambda^n|_{B_{\frac{1}{2}}(\mathbf{0})}$ .

### Aufgabe 34

Sei (M, d) eine vollständiger, metrischer Raum. Zeigen Sie, dass die folgende Metrik, genannt Beschränkt-Lipschitz-Metrik,

$$w_{BL}(\mu,\nu) = \sup\{\int f d\mu - \int f d\nu \mid \operatorname{Lip}_d f, \sup |f| \le 1\}$$

eine Metrik auf  $\mathcal{P}(M)$  mit der selben Topologie wie  $d_{LP}$  ist, d.h.  $\tau_{w_{BL}} = \tau_{d_{LP}}$ , wobei

$$\operatorname{Lip}_d f = \sup_{x \neq y} \frac{|f(y) - f(x)|}{d(y, x)}$$

Finden Sie dazu eine geeignete Kostenfunktion, die eine Metrik auf M ist und nutzten Sie, die Tatsache, dass für den metrischen Raum  $(M, \tilde{d})$  die 1-Wasserstein-Metrik  $\tilde{w}_1$  wie folgt gegeben ist

$$\tilde{w}_1(\mu,\nu) = \sup\{\int f d\mu - \int f d\nu \mid \operatorname{Lip}_{\tilde{d}} f \leq 1\},$$

wobei  $\operatorname{Lip}_{\tilde{d}}$  die Lipschitz-Konstante bzgl.  $\tilde{d}$  ist.

#### Aufgabe 35

Sei (M,d) beschränkt-kompakt und nicht-kompakt,  $\mu \in \mathcal{P}_p(M)$  und  $x_n \to \infty$ . Wir definieren die Folge von Maßen  $\mu_n = (1 - \lambda_n)\mu + \lambda_n \delta_{x_n}$  für  $\lambda_n \in [0,1]$ . Zeigen Sie folgende Aussagen:

(a) Es gilt

$$w_p(\mu, \mu_n)^p = \lambda_n w_p(\mu, \delta_{x_n})^p.$$

(b) Für geeignetes  $\lambda_n$  gilt

$$w_p(\mu, \mu_n) = 1.$$

Im folgenden wählen wir  $\lambda_n$ , so dass dies gilt.

- (c) Die Folge  $(\mu_n)_{n\in\mathbb{N}}$  konvergiert schwach gegen  $\mu$ , aber  $(w_p(\mu,\mu_n))_{n\in\mathbb{N}}$  nicht zwangläufig gegen 0.
- (d) Ist p > 0 und  $q \in (0, p)$ , dann gilt

$$\int d(x_0, x)^q d\mu_n(x) \le \int d(x_0, x)^q d\mu(x) + \lambda_n d(\delta_{x_n}, \delta_{x_0})^q.$$

(e) Weiterhing gilt

$$\lambda_n d(\delta_{x_n}, \delta_{x_0})^q = \frac{d(\delta_{x_n}, \delta_{x_0})^q}{d(\delta_{x_n}, \delta_{x_0})^p} \to 0,$$

so dass

$$\limsup_{n \to \infty} \int_{M \setminus B_R(x_0)} d(x_0, x)^q d\mu_n(x) \le \limsup_{n \to \infty} \limsup \int_{M \setminus B_R(x_0)} d(x_0, x)^q d\mu(x).$$

(f) Ist p > 0 und  $q \in (0, p)$ , dann konvergiert  $(\mu_n)_{n \in \mathbb{N}}$  gegen  $\mu$  in  $\mathcal{P}_q(M)$ , d.h.  $w_q(\mu_n, \mu) \to 0$ .

#### Aufgabe 36

Ist (M, d) ein beschränkt-kompakter, metrischer Raum, so ist für  $\mu, \nu \in \mathcal{P}_p(M), p \ge 1$ , die Menge der t-Mittelpunkte

$$M_t(\mu, \nu) = \{ \mu_t \in \mathcal{P}_p(M) \mid \frac{w_p(\mu, \mu_t)}{t} = \frac{w_p(\mu_t, \nu)}{1 - t} = w_p(\mu, \nu) \}$$

kompakt in  $\mathcal{P}_p(M)$ .

### Aufgabe 37

Ist (M, d) nicht-verzweigend, so gilt

$$D(x_0) \subset \operatorname{Cut}(x_0),$$

wobei  $Cut(x_0)$ , die Menge der Schnittpunkte

$$\operatorname{Cut}(x_0) = e_1(e_0^{-1}(x_0)) \setminus \bigcup_{t \in [0,1)} e_t(e_0^{-1}(x_0))$$

und  $D(x_0)$  gegeben als

$$D(x_0) = \{ x \in M \mid \exists \gamma, \gamma' \in (e_0, e_1)^{-1}(x_0, x) : \gamma \neq \gamma' \}$$

ist die Menge der Punkte, welche durch zwei Geodäten erreichbar ist. D.h. jeder Punkt in  $D(x_0)$  ist bereits ein Schnittpunkt. Zusatzfrage: Gibt es andere Punkte, wenn ja wie sehen diese aus?

### Aufgabe 38

Seien  $(M_i, d_i)_{i \in I}$  kompakte geodätische Raume und  $K_i \subset M_i$  kompakte Teilmengen, so dass es Isometrien  $\mathcal{I}_{i,j} : K_i \to K_j$  gibt, d.h.  $\mathcal{I}_{i,j}$  ist bijektiv,  $\mathcal{I}_{i,k} = \mathcal{I}_{j,k} \circ \mathcal{I}_{i,j}$ ,  $\mathcal{I}_{i,i} = \text{id}$  und es gilt

$$d_i(x_i, y_i) = d_j(\mathcal{I}_{i,j}(x_i), \mathcal{I}_{i,j}(y_i)).$$

Auf  $\coprod M_i$  definieren wir eine Äquivalenzklasse  $\sim$  wie folgt,

$$x \sim y : \Leftrightarrow \begin{cases} x = y & \exists i \in I : x \in M_i \backslash K_i \\ \mathcal{I}_{i,j}(x) = y & \exists i, j \in I : x \in K_i, y \in K_j. \end{cases}$$

Die Menge M ist nun die Menge der Äquivalenzklassen auf  $IIM_i$ . Bildlich erhält man M indem man die Räume  $M_i$  an den Stellen  $K_i$  zusammenklebt. Aus diesem Grund werden wir häufig missbräuchlich annehmen, dass

$$M = K \cup \bigcup_{i \in M} M_i$$

wobei K alle  $K_i$  gleichzeitig repräsentiert, d.h. für jedes  $x \in M$  existiert ein i mit  $x \in M_i$  und für  $x \in K$  gilt sogar  $x \in K_j$ ,  $j \in I$ .

Zeigen Sie, dass die folgende Funktion  $d: M \times M \to [0, \infty)$ 

$$d(x,y) = \begin{cases} \inf_{z \in K} \left\{ d(x,z) + d(z,y) \right\} & x \in M_i, y \notin M_i \\ d(x,y) & x, y \in M_i \end{cases}$$

eine geodätische Metrik auf M und M kompakt ist genau dann, wenn die Indexmenge endliche ist. Beispiel: Den Tripod erhält man, indem man  $M_i = [0, 1] = [0_i, 1_i]$  und  $K_i = \{0_i\}$  wählt. Sei X eine nicht-abzählbare, wohl-geordnetete Menge mit minimalem und maximalem Element, d.h. es gibt eine Ordnung <, so dass für alle  $\alpha \neq \beta \in X$  entweder  $\alpha < \beta$  oder  $\beta < \alpha$ . Außerdem gibt es ein Elemente  $0, \omega \in X$  mit  $0 < \alpha < \omega$  für alle  $\alpha \in X \setminus \{0, \omega\}$ . Aufgrund der Ordnung, sind offene Intervalle  $(\alpha, \beta)$  wohldefiniert und man sagt nun U ist offen in X genau dann, wenn

$$U = \bigcup_{(\alpha,\beta) \subset U} (\alpha,\beta) \cup \bigcup_{[0,\beta) \subset U} [0,\beta) \cup \bigcup_{(\alpha,\omega] \subset U} (\alpha,\omega].$$

### Schriftliche Abgabe am 12.12.2016 vor der Vorlesung.

Sie erreichen die Vorlesungshomepage unter www.math.uni-tuebingen.de/arbeitsbereiche/geometrische-analysis-und-mathematische-relativitaetstheorie/lehre.