

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Dr. Martin Kell Felix Dietrich

Optimaler Transport

Wintersemester 16/17

17.10.2016

Übungsblatt 6

Aufgabe 20 [8 Punkte]

Geben Sie bitte eine diskrete Formulierung für das Kantorovich-Problem und die in der Vorlesung behandelte Kantorovich-Dualität an. Orientieren Sie sich dabei an der ersten Vorlesung (μ, ν als Vektoren auf 1 normiert, π, c als Matrizen). Können Sie die diskrete Formulierung des Kantorovich Problems mit folgendem Theorem aus der linearen Programmierung kombinieren um formal die Kantorovich Dualität in diesem diskreten Fall zu beweisen?

Theorem(Lineare Programmierung).

Seien $x, c \in \mathbb{R}^N$, $b \in \mathbb{R}^M$ und eine Matrix $A \in \mathbb{R}^{M \times N}$. Wir definieren $x \geq 0$: $\Leftrightarrow x_i \geq 0$ für alle i = 1, ..., N. Dann sind die Probleme

$$\min_{x \in \mathbb{R}^N} \langle c, x \rangle \quad \text{unter der Bedingung } Ax = b, x \ge 0$$

und

$$\max_{y \in \mathbb{R}^M} \langle b, y \rangle \quad \text{unter der Bedingung } A^T y \le c$$

äquivalent, d.h. ist x_0 eine Lösung des ersten Problems und y_0 eine Lösung des zweitens, so gilt

$$\langle c, x_0 \rangle = \langle b, y_0 \rangle.$$

Aufgabe 21 [4 Punkte]

Seien $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}^N$ Punkte, die nicht notwendigerweise verschieden sind. Wir definieren die Maße $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ und $\nu = \frac{1}{n} \sum_{j=1}^n \delta_{y_j}$. Zeigen Sie bitte, falls $\pi = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$ eine optimale Kopplung zwischen μ und ν bezüglich der Kostenfunktion $c = d^2$ in \mathbb{R}^N ist, so gilt

$$\sum_{i=1}^{n} |x_i - y_i|^2 \le \sum_{i=1}^{n} |x_i - y_{\sigma(i)}|^2$$

für jede Permutation $\sigma \in \mathcal{S}_N$.

Schriftliche Abgabe am 28.11.2016 vor der Vorlesung.

Sie erreichen die Vorlesungshomepage unter www.math.uni-tuebingen.de/arbeitsbereiche/geometrische-analysis-und-mathematische-relativitaetstheorie/lehre.