

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Dr. Martin Kell Felix Dietrich

Optimaler Transport

Wintersemester 16/17

17.10.2016

Übungsblatt 8

Aufgabe 23 [8 Punkte]

Sei $\|\cdot\|$ eine strikt konvexe Norm auf \mathbb{R}^n (Alternativ $\|\cdot\|$ ist die euclidische Norm) und \mathcal{L}^n das n-dimensionale Lebesgues-Maß. Außerdem sei für $x \in \mathbb{R}^n$ und $t \in [0,1]$ die folgende Abbildung $\Phi_{x,t}: \mathbb{R}^n \to \mathbb{R}^n$ definiert

$$\Phi_{x,t}(y) = x + t(y - x).$$

Zeigen Sie bitte folgende Aussagen:

(a) (Ohtas Maßkontraktionseigenschaft) Für alle beschränkten Borel-Mengen $A \subset \mathbb{R}^n$, $x \in \mathbb{R}^n$ und $N \in [n, \infty)$ gilt

$$t^N \mathcal{L}^n(A) \leq \mathcal{L}^n(\Phi_{x,t}(A)).$$

(b) (Sturms Maßkontraktionseigenschaft) Für alle nicht-negativen $\rho_1 \in L^1(\mathbb{R}^n)$ mit $\int_{\mathbb{R}^n} \rho_1(x) d\mathcal{L}^n(x) = 1$ und $N \in [n, \infty)$ gilt

$$\int \rho_t^{1-\frac{1}{N}} d\mathcal{L}^n \ge t \int \rho_1^{1-\frac{1}{N}} d\mathcal{L}^n$$

wobei ρ_t die Dichte des absolut-stetigen Maßes $\mu_t = (\Phi_{t,x})_* \mu_1$ mit $\mu_1 = \rho_1 \mathcal{L}^n$ ist.

Hinweis: Zeige dies erst für $\mu_1 = \frac{1}{\mathcal{L}^n(A)} \mathcal{L}^n \big|_A$, dann via Approximation durch einfache Funktionen für alle Dichten ρ).

Aufgabe 24 [8 Punkte]

Angenommen (M,d) ist ein vollständiger, geodätischer Raum. Eine Funktion $f:M\to [0,\infty)$ wird K-konvex genannt, wenn für alle Geodäten $\gamma\in\mathsf{Geo}_{[0,1]}(M,d)$

$$f(\gamma_t) \le \frac{1}{2}f(\gamma_0) + \frac{1}{2}f(\gamma_1) - Kt(1-t)d(\gamma_0, \gamma_1)^2.$$

Zeigen Sie folgendes:

(a) Jede K-konvexe Funktion mit K > 0 hat ein Minimum.

Hinweis: Sei $(x_n)_{n\in\mathbb{N}}$ eine minimierende Folge. Aus der Konvexität folgt, dass auch die Folge der Mittelpunkte von x_n und x_{n+1} mimimierend ist. Benutze die K-Konvexität um zu zeigen, dass $(x_n)_{n\in\mathbb{N}}$ somit eine Cauchy-Folge ist.

(b) Angenommen es gibt ein C > 0, so dass

$$d(\gamma_t, y)^2 \le \frac{1}{2}d(\gamma_0, y)^2 + \frac{1}{2}d(\gamma_1, y)^2 - Ct(1 - t)d(\gamma_0, \gamma_1)^2$$

für alle $y \in M$ und alle Geodäten $\gamma \in \mathsf{Geo}_{[0,1]}(M,d)$. Zeige, dass für alle Maße $\mu \in \mathcal{P}_2(M)$ und alle Geodäten $\gamma \in \mathsf{Geo}_{[0,1]}(M,d)$ auch folgendes gilt

$$w_2(\delta_{\gamma_t}, \mu)^2 \le \frac{1}{2}w_2(\delta_{\gamma_0}, \mu)^2 + \frac{1}{2}w_2(\delta_{\gamma_1}, \mu)^2 - Ct(1-t)d(\gamma_0, \gamma_1)^2,$$

d.h. $f(x) = w_2(\delta_x, \mu)^2$ ist C-konvex.

(c) Schließen Sie aus den beiden vorigen Aussagen, dass es für jedes $\mu \in \mathcal{P}_2(M)$ ein $x_\mu \in M$ gibt, so dass

$$\operatorname{Var}_{2}(\mu) := \inf_{x_{0} \in M} \int d(x, x_{0})^{2} d\mu(x).$$
$$= \int d(x, x_{\mu})^{2} d\mu(x).$$

Wir nennen $\operatorname{Var}_2(\mu)$ die *Varianz von* μ und x_μ den *Schwerpunkt* oder *Erwartungswert*.

Sie erreichen die Vorlesungshomepage unter www.math.uni-tuebingen.de/arbeitsbereiche/geometrische-analysis-und-mathematische-relativitaetstheorie/lehre.