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Note: The following notes are written for the lecture “Linear Partial Differential
Equations” during the summer semester 2017 at the University of Tiibingen.

1. Crasses oF PDEs

Definition 1.1 (Partial Differential Equation). Let € C R™ be an open domain
and F a function on R”" x R"™' x ... R” x R x €. Then an equation of the form

F(D*u(z), D* Yu(z),..., Du(z),u(z),z) =0 for all z € Q
for an unknown function v € C*¥(Q) is called a partial differential equation of k-th
order.

e The equation is called linear, if F' is linear in all but the last entry. In this
case the equation transformed into the following equation

> @ (2)dyu(x) = f(z)
lv|<k
where 7 is a multi-index and 9, = 0,, - - - 05, where v = (71,..., 7).
e The equation is called semi-linear, if F' is lienar in the first entry. In this
case the equation is of the form

Z a”(z)dyu(z) + F(D*Yu(x),. .., u(x),z) =0 forallz € Q
lvI=k

where F is a function on R™ ' x .-+ x R x Q. ) .
e The equation is called quasi-linear, if there are function a.,, F' : R" XX
R x € — R such that the equation can be transformed into the following

Z a?(DFu(x), ... u(x), )dyu(z)+EF(D* tu(z), ... ,u(z),x) =0 for all z € Q.
Ivl=Fk

In the course of the lecture we will focus mainly on linear partial differential
equations of second order. The general equation is then given as follows: Let
Q C R”™ be an open and connected domain, ¢/ : Q@ — R, b* : Q@ — R and
¢ : @ — R (continuous) functions on 2 where 4,5,k € {1,...,n}. Then for a
function u € C?(2) we define an operator L : C?(Q2) — C°(Q) by

Lu(x) = Z a™I (x)0;05u(z) + Z bF (2)Opu(z) + c(z)u(z).
ij=1 k=1

Remark. One may verify that Lu(z) = Lu(x) for all u € C?(Q) if a™ is replaced

by its symmetrization agy, = L(a®7 4 a?"). Thus without loss of generality we can

2
assume that the matrix (a7 (x))7;_; is a symmetric matrix.

To get a partial differential equation one needs in addition a function f € C°(Q)
and asks whether u € C%(Q) satisfies the equation
Lu=f in Q.
The most natural one is to look for (non-trivial) functions u such that Lu = 0. As
L is linear one can also ask whether there are (non-trivial) u and a A € R such that
Lu=M>M inQ

in which case we call u an eigenfunction of L. Instead of solving Lu = Au one may
equivalently solve the equation Lyu = 0 where L) = L — \id.
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Example 1.2 (Classical Examples). Classical linear PDEs are given as follows
Laplace equation: Let L = A:=Y"" | 9;; then
Au=0 in

is called the Laplace equation and solutions u are called harmonic function.
Poisson equation: More generally, one may look the Poisson equation

Au=f inQ
Heat equation: Assume Q7 C R x R™ where the first coordinate will be denoted
by ¢t and A is defined as above. Then the following is called the wave
equation
&gu —Au=0 in QT
Wave equation: As above Qr C R x R:
attu —Au=0 1in QT
A class of examples of non-linear PDEs a
Non-linear Laplace equation:
Au= f(u) in
where f: R — R is a function. This is an example of a quasi-linear PDE.
p-Laplace equation:
div(|[VuP™2Vu) =0 in Q.
This is an example of a semi-linear PDE.
Minimal surface equation:

div <Vu> =0 in Q.
VI+[Vul?
Monge-Ampére equation:
det (D*u) =0 in Q.
Note that just asking for Lu = 0 gives in general an underdetermined system if

0f) is non-empty. This is best observed in the one-dimensional setting.

Example (One dimensional). In case n = 1, Q = (a,b) for a < b € R and the
operator L is of the form

Lu=au” +bu' + cu
for functions a,b,c : (a,b) — R. Hence the linear partial differential equation of
second order

Lu=f
is just a linear ordinary differential equation of second order. For ¢ = 1 and
b=c= f =0 the equation

u'=0

is solved by all affine functions, i.e. for ag,by € R
u = apx + by

satisfies u”” = 0. Note that this is obviously underdetermined so that it is natural
to find solution with given boundary values, i.e. find u such that u(a) = g(a) and
u(b) = g(b) with for some g : {a,b} — R, or shorter written as u|aQ =g.
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Thus also in the higher dimensional setting it is natural to ask for solution
u € C%(Q) N CO(Q) that satisfy

{Lu:f in ©
ulp0 = 9-

A solution of a PDE with boundary data ¢ is usually called a solution to the
Dirichlet problem (with boundary data g).

Remark. By linearity it is possible to focus only on case where either f =0or g =0
(given that there are sufficiently many solutions u € C%(Q) N C°(Q) with Lu = f
and resp. u‘ag =0:

(1) If & € C?(2) N CON) satisfies Lu = f and v € C?(2) N C°(Q) solves
Lu = 0 with boundary data g = g — then w = v + @ solves Lu = f
with boundary data g.. -

(2) If & € C%*(Q) N C°Q) satisfies ﬁ|aﬂ = g and v € C%*(Q) N C°(Q) solves
Lu = f with boundary data g = 0 where f = f — Lii then u = v + @ solves
Lu = f with boundary data g.

g6,

In general the equation Lu = 0 with given boundary data might still be unsolv-
able if the highest order coefficients are too general. As we can assume the matrix
(a®7 )ijl is symmetric, it can be diagonalized so that we can define the following
three main categories of PDEs:

Elliptic: The operator L is called elliptic if for all x € €2 the matrices (a®J ()7 21

have positive eigenvalues!. This can be expressed by assuming there are
functions A, A : Q — (0, 00) such that

Ao) Y 66 <> a(2)&8 < M) Y &
=1 =1 =1

for all £ € R™ and all z € Q. If A and A can be chosen independently of
x €  then we say the operator is uniformly elliptic.

Hyperbolic: The operator L is called hyperbolic if for all z € 2 the matrices
(a®7 (z))}j=1 non-zero eigenvalues. Note that if z — a®J(x) is continuous
then the number of positive (and resp. negative) eigenvalues remains con-
stant along €2 by connectedness of €2 and continuity of the spectrum of the
matrices (a*7(z))};—;. In a simpler setting, one only looks at the class
of hyperbolic PDEs where a''l(z) = —1, a9 (z) = a’!(z) = 0 such that
(a®I (z))} j—2 is elliptic and independent of the first coordinate. In that case
a PDE of the form 0y — Lu = f in a domain Q7 C R x R™ where L is an
elliptic operator L.

Similarly one could look at operators Lu on domains Q7 C R x R™ where a*7, bF
and ¢ depend on the first coordinate t. Note, however, that an equation

Lu=f
would be just a time-dependent elliptic equation. An alternative is to add a deriv-

ative dyu in the equation and obtain the following:

1resp. negative eigenvalues as we might switch signs and replace L by —L.
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Parabolic: A parabolic PDE on the domain Qr € RxR"™ is of the form 9; —Lu = 0
where L (resp. it’s coefficients a®/, b* and c) are allowed to depend on t,
in which case it would be call a time-dependent parabolic PDE.

The focus of the lecture is on elliptic and parabolic PDEs as many techniques are
similar.

2. HARMONIC FUNCTIONS ON R"
In this section we study harmonic functions on domain 2 C R.

Definition 2.1 (Harmonic function). A function u € C?() is called subharmonic
if Au > 0 and it is called superharmonic if Au < 0. If it is both sub- and super-
harmonic then we say w is harmonic.

Observe that the sum of two subharmonic functions is itself subharmonic.

2.1. The mean value property, maximum principle and Harnack’s in-
equality. In the following we frequently use the notation f, fdu = ﬁ S fap
for a measure pu. In case p is the Lebesgue measuren then this is written as

Theorem 2.2 (Mean value property). Assume u € C%(S2) is subharmonic. Then
for all B,(z) CC Q it holds

u(z) < ]éBr(x) u(z)dz

u(x) < ]i R

Remark. Later on we show that the mean value property is actually equivalent to
being subharmonic for all C2-functions.

and

Proof. In polar coordinates it holds

][ u(z)dz = r"! / u(x + rw)dw.
aB, (x) §n-1

Also note that for z = rw € 9B, (x) unit outer normal v is given by w. Hence

Oyu(z) = %u(az + sw)

s=r

Then polar coordinates show

/ du(2)dz = r"t / iu(a: + sw)
OB, (z) sn-1 ds

Because u € C1(£2) we can pull out derivative under the integral and obtain

/ Oyu(z)dz = r"fli </ u(z + sw)dw>
8B, (z) ds \ Jgn—1

:r"_lnwni ][ u(z)dz
ds \Jop, ()

where we used again the polar coordinate transformation and the fact that |0B,| =
nw,r™ 1,

dw.

S=T

s=r

s=r
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Now Green’s formula applied yields

0 S/ Au(y)dy.
By(z)

= / Oyu(z)dz
OBy ()

implying that
T u(z)dz
0B, ()
is non-decreasing in r +— (0,79) for some ro > r with B,,(z) C Q. Since u is
continuous at x it holds

u(x) = lim u(z)dz.
r—0 BBT(CE)
This proves the first claim. To obtain the second claim note that

wpr"u(x) :/ Nwy,s" ds-/ / dzds—/ u(y)dz.
0 9B ( 3:) B, (x)

Because |B,(z)| = w,r™ we obtain the second claim. O

(z)
Corollary 2.3 (Strong Maximum Principle). For all subharmonic functions u €
C? ()N C°(Q) it holds

Sup u = supu
Q a0

and if for some xg € Q it holds

u(xg) = supu
Q
then u is constant on Q. In particular, if u > 0 and u|aQ =0 then u = 0.

Proof. Let xg € Q be such that u(zg) = supgu. If o € IQ there is nothing to
prove. In case xg € Q there is a ball B.(zg) CC  such that the mean value
property holds for B, (xg). It suffices to show that w is constant.

Now the choice of xg yields the following

supu = u(zg) < ][ u(y)dy < supu.
Q B (zo) Q

This, however, can only hold if u(y) = u(xg) for all y € B,(x¢) implying that w is
locally constant. As € is connected we see that u must be constant. O

Because 4-u is subharmonic for each harmonic function u € C?(2) N C°() we
obtain the following corollary which gives also a uniqueness result.

Corollary 2.4. For all harmonic functions u € C?(Q) N C°(Q) it holds

sup |u| = sup |ul.
Q Q

In particular, if uy,us € C?(Q2) N C°Q) are harmonic in Q with u1|89 = Uy
then u1 = us.

o0

Proposition 2.5. Let u € C°(Q). Then the following are equivalent.
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e for all B.(z) CC Q it holds u(z) < fc’)Br(z) u(z)dz

e for all B.(z) CC Q it holds u(z) < fBT(@ u(y)dy

e for all B.(x) CC Q it holds u(x) < h(xz) where h is a harmonic function
on B,.(x) with boundary data g > u|aBT(I).

If, in addition, u € C%(Q) then either of the condition above is equivalent to u being
subharmonic.

Proof. Exactly as in the proof of the mean value property, the first property implies
the second by integration.

Assume the second property holds: then the maximum principle holds on B,.(x)
for uw— h whenever h is a harmonic function on B, (z) with boundary data u’ OB (x)"
Thus

sup u —h= sup u—h <0
B, (x) OB, (x)

implying that u < h.
Let? h is a harmonic function on B, (z) with boundary data u‘ OB (2)" Then the
mean value property holds for h. Thus assuming the third property we get

u(z) < h(z) = 7([9&(%) h(z)dz = f?BT(m) u(z)dz.

It remains to show that either of the first three properties implies that u is
subharmonic if u € C?(2). Assume by contradiction Au(z) < 0 for some z € .
Then there is an open ball B,.(z) CC  such that Au(z) < —e < 0for ally € B,.(z).
In that case u is superharmonic in B,.(z). However, this implies that

u(y) > ][ udy'
Bs(y)

for all By(y) CcC B,(x) (actually for all B,(y) C B,(x) since u € C°(B,(z))).

However, this means
u(y) = ][ udy'.
B (y)

Pick y € B,.(z) and define a function v. € C?(B,(z)) by
vely) = u(y) + ~ly = ¢Buera
and note that v.(y) = u(y). Since Au < —e on B,.(x) we have
Av, < —c+ ~Ally = @l <O,

i.e. v is superharmonic on B, (x). In particular, it holds
ve(y) > f vedy'
Bs(y)

2Strictly speaking we assume the existence of harmonic functions in balls with given boundary
data, see next section.
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for all Bs(y) CC B,(x). However, this leads to the following contradiction

€
0< ][ — |y — || Buciady’
Bs(y) n

= ][ ve —udy’ < ve(y) —u(y) = 0.
Bs(y)
O

The proposition shows allows us to define a weak form of (sub-/super-)harmonicity.

Definition 2.6 (Mean-value harmonic). A (bounded) measurable function u €
CY(Q) is called mean-value subharmonic if for all B,(z) CC

uw) < oy

It is mean-value superharmonic if —u is mean-value subharmonic. If it is both
mean-value sub- and superharmonic we call it mean-value harmonic.

Remark. Later we prove that a mean-value harmonic function is indeed a C2-
function and hence harmonic.

The following is now a consequence of monotonicity of the averaged integral over
balls.

Lemma 2.7. Let {u;};cr be mean-value subharmonic functions in Q for some finite
index set I and define

u(zx) := supu;(x).
iel
Then u is mean-value subharmonic.
Theorem 2.8 (Harnack’s Inequality). Assume u € C?(S2) is a non-negative har-
monic function in Q. Then for each Q' CC Q there a constant C = C(n,Q),Q)

such that
supu < Cinf u.
Q/ Q/

Proof. Let By,.(y) CC € then for all z1,25 € B,(y) it holds

1
u(zy) < ][ u(y)dy < —— u(y)dy
@<F Bl S Y

and

1
we) = f iy o [
B3 (1) |B37,($2)| Bz, (y)
Since | Bs,-(22)| = 3"|By(x1)]| this shows
u(zy) < 3"u(ze).

In particular,

sup v < 3" inf wu.
B, (y) By (y)

Let ' CC Q then there is a radius r > 0 such that for all y € ¢l it holds
By (y) CC Q. Since cl Q' is compact there are finitely many yi, ..., yn such that

N
' c By
=1
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Thus for all x1, x> € Q' there is a sequence zg = x1, 21, ...,2Ny = T2 € € such that
for each ¢ =1,..., N there is an index j; € {1,..., N} such that z;_1, 2; € B,(y;,).
Thus we obtain

u(zo) < 3"u(z1) < 3%u(z) < --- < 3Vu(zy)

showing that

supu < 3V7 1nfu
Q/
O

Remark. The Harnack inequality also implies the strong maximum principle, in-
deed, if u € C°(Q) and M = supg, u = u(xg) for some xo € M then M —u >0 is a
non-negative harmonic function. Thus for all ' CC Q with zg € Q’ it holds

sup(M —u) <inf(M —u) =0
Q 4
implying u = M.
2.2. Poisson’s formula for solutions on the ball.

Theorem 2.9 (Poisson’s formula). Let g € C°(0B1(0)) be a continuous function
and define a function u : B1(0) = R as follows

1—|z|®
w(z) = { e Josy0) Tagedz @ € Bi(0)
g(x) x € 0B1(0).
Then u € C*°(B1(0)) N C°(B1(0)) is a harmonic function in By1(0) with boundary
data g.
Proof. Exercise. O

Corollary 2.10. Let g € C°(0B,(a)) be a continuous function and define a func-
tion u : B.(a) = R as follows

r?—|z—al?
u(z) =14 men JoB, () = z\?dz z € B(a)
g(x) x € 0B,(a).

Then u € C*®(B,(a)) N C°(B.(a)) is a harmonic function in B,(a) with boundary
data g.

This gives us immediately a regularity theorem for (mean value) harmonic func-
tions in general domains.

Corollary 2.11. Ifu E C’O( ) satisfies the mean value property on all ball B, (x) CC
Q, i.e. u(x fB () U y)dy, then u € C*°(Q) and u is harmonic in .

Proof. Tt suffices that u € C*°(B,(x)) for all B.(z) CC Q. Now let v be the har-
monic function on B,.(z) given by Poisson’s formula with boundary data u’ B,

(z)
Then u—w is a still satisfies the mean value property function on all balls B,(z') CC
=0

B, (z) and hence the maximum principle on B,.(z). However, (u — ’83 @)

implying
sup |u—wv| = sup |u—v|=0,
B, (z) OBy (x)
ie. u=wvon By(z). Asv € C*(B,(x)) this yields the claim. O

Combined with Proposition 2.5 applied to +u we get t he following.
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Corollary 2.12. Let u € C°(Q). Then the following are equivalent.

o for all B,(z) CC Q it holds u(z) = {55 () u(z)dz

o for all B,(x) CC Q it holds u(x) = fz ) u(y)dy

o for all B.(z) CC Q it holds u(z) = h(x) where h is a harmonic function
on By(x) with boundary data u|aB (@)"

e u is twice differentiable in Q (i.e. u € C?(Q)) and harmonic in Q (i.e.
Au=0)

e u is infinitely many times differentiable in Q) and harmonic in €.

2.3. Convergence theorems for harmonic functions. The first lemma is just
a consequence that convergence of second derivative implies convergence of the
Laplacian hence being harmonic is preserved under this strong form of convergence.

Lemma 2.13. Ifu, € C%*(Q) is a sequence of subharmonic functions that converges
locally uniformly in C? to a function u € C?*(Q) then u is subharmonic.

Using Poisson’s formula this can be improved as follows:

Proposition 2.14. Assume u,, € C%(Q) is a sequence of harmonic functions con-
verging locally uniformly (in C°) to a function u € C°(Q) then u € C>®(Q) is
harmonic.

Proof. Note that the mean value property is preserved under uniform convergence.
Thus the claim follows from Corollary 2.11. |

A slightly weaker (though also different) convergence result was obtained by
Harnack using the Harnack inequality.

Theorem 2.15 (Harnack’s Convergence Theorem). Let u,, € C2(£2) be a sequence
of harmonic functions such that u, < upy1. If for some y € € the sequence
{un(y) }nen is bounded then (up)nen converges locally uniformly to a harmonic
function u € C?(1Q).

Proof. Since (u,(y))nen is a bounded, non-decreasing sequence it is, in particular,
convergence and hence a Cauchy sequence. Thus for all € > 0 there is an N € N
such that for all m > n > N it holds

0 < um(y) —un(y) <e

Let @ cC Q and C = C(n, Y, Q) be the constant given in Theorem 2.8. Since
Uy, — Up > 0 is harmonic for all m > n > N we get

SUp |t — Un| = sup(ty, — uy) < Cinf (U, — uy) < Clum(y) — um(y)) < Ce
Q Q

showing that (u,)nen is a Cauchy sequence in C°()'). In particular, u, — u
uniformly on €' where u(x) := limpey un (). O

Going back to Poisson’s formula we observe the following: for all z € B,(a) CC
B, (a) the function z \.’Eiz| is uniformly bounded (by Cs,). Thus it suffices to
assume g € L'(0B,.(a)) to obtain a function u € C°(B,(a)) which is harmonic in
B.(a). In that case we still say u is the (unique) harmonic function with boundary

data g. Furthermore, the uniform convergence on the boundary data can be replace
by
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Proposition 2.16. Let (g, )nen be a sequence of functions in L (90B,(a)) converg-
ing in L' to a function g. If u, is the (unique) harmonic function with boundary
data gy, and u the one corresponding to g. Then the sequence (up)neoo cOnVETgESs
locally uniformly to u in By(a).

Proof. Let x € B,(a) then

lu(z) — tn ()] < 7 /8 OB ACIERY

where the convergence of the right hand side does not depend on z. Hence u,, — u
uniformly on Bg(a) which implies the claim as s < r can be chosen arbitrary. O

Corollary 2.17. If (g,)nen is a non-decreasing sequence of functions in L (0B,.(a))
such that |gn| < C. Then u, converges locally uniformly to a harmonic function

u € C(B,(a)).

Proof. Let g =lim g,, then by the Monotone Convergence Theorem it holds

/ |gfgn|d'z:/ gfgndZ‘)Oa
9B, (a) 9B, (a)

i.e. g, — g in L'(Q). Then the previous proposition yields the claim. ([l

2.4. Gradient estimates. Note by linearity if u € C?(£2) is harmonic in  then
for B,(x) CC Q it holds

Oiu(x) = 0; (7[ udz) = ][ O;udz.
By.(x) B, (x)

In particular, 0;u is harmonic in € for all i = 1,...,n. Furthermore, it holds
Vu(zx) :][ Vu(z)dz = E][ wov< o sup |ul.
Br(x) " JoB. () T 8B, (x)
Thus
[Vl () < - sup|ul
dx Q
where

dy = d(z,00) = inf{d(x,y) |y € 00}.

Lemma 2.18. If u is harmonic bounded from above and below by a constant D
then for each Q' CC ) there is a constant C = C(n,D - d(€¥',Q)) such that u is
Lipschitz continuous on ' with Lipschitz constant bounded by C.

Combining Arzela—Ascoli and Proposition 2.14 gives the following corollary.

Corollary 2.19. Let (u,)nen be a sequence of C?-harmonic functions in Q that
is uniformly bounded above and below by a constant D then there is a subsequence
(tn, )npen such that u,, converges locally uniformly in C°(Q) to a harmonic func-
tion u € C(9Q).

Remark. If (un)nen is non-decreasing and bounded then the sequence converges
uniformly and gives yet another proof of Harnack’s Convergence Theorem (Theorem
2.15).
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An iterated argument also shows that 0,u is harmonic for any multi-index ~.
Then as above we obtain

|DFu|(z) < Csuplu| z€Q ccQ
Q

where C' = C(k,n,Q', Q). Looking at (0,u)},|<x would show that a bounded se-
quence of harmonic functions is actually C*-compact in any ' CC Q.

2.5. Constructing harmonic functions in general domains. The Poisson in-
tegral formula shows that it is possible to solve the Dirichlet problem on any ball
with any given continuous (resp. L!) data. In this section we use this information
to construct harmonic functions on more general domains 2 and show that they
satisfy certain boundary regularity if 052 is not too bad.

Perron’s method of subharmonic functions. Let 2 be an open, bounded and con-
nected domain. Given g € C°(9Q) we define the following two sets

S_=8_(9,Q) = {u € C°(Q) | u is mean-value subharmonic in Q and u/,, < g}

Sy =5:(9,9) = {u € C°Q) | u is mean-value superharmonic in Q and u{aﬂ > g}

Note that any function u € S_ NSy C C°(Q) would be mean-value harmonic in
(hence harmonic in Q) and satisfies u| a0 = 9 and by uniqueness S_ N Sy contains
at most one element.

Also note that for any ug € Sy the function u_ —wu4 is mean-value subharmonic
with non-positive boundary data hence u_ < uy. Since the function v_ = inf g is
in S_ and the function v4 =supg is in S; we also have

infg<u_ <wug <supg
o 90

for all uy € Sy.
Thus it is natural to look at the following

us(xz) = sup wu_(x) € [inf g,sup g
u_€S_ 902 " H0

wi(z)= Inf u(z)e [infg, sup gl-

Perron’s Method is to show the following:

Step 1: Show that u, (and thus also «*) is harmonic.
Step 2: Show u.|,, = g (and thus u, = u*).

Before we start with the Step 1 we shows that a function stays mean-value sub-
harmonic if we replace it locally a harmonic function of given boundary data.

Lemma 2.20 (Replacement Lemma). Let u € C°(Q) be a mean-value subharmonic
function in Q and By(x) CC Q. If h is a harmonic function in By (z) with boundary
data u’aﬂ then the following function

() = h(z) z€ Br(fc)
u(z) x € Q\Bp(x).

Is continuous in Q and mean-value subharmonic in Q.



LECTURE NOTES »LINEAR PARTIAL DIFFERENTIAL EQUATIONS* 13

Proof. Let Bs(y) CC Q be an arbitrary ball and h be a harmonic function with

h . We need to show h > @ on B (y).

o2, = Moz,
Since u is continuous and @ > wu, it holds h > u on B,(y) by subharmonicity of
u. Thus it suffices to show A > h on B,(z) N B,(x).

Note that 9(B,(y)NB,.(z)) = 0Bs(y)NB,(x)UdB,.(z)NBs(y). On dB,(y)NB,(x)
it holds h = @ = h. And if §j € 8B,(x) N By(y) then h(§) = u(j). Since u — h < 0
on B, (y) we have by the maximum principle

sup h—h= sup h—h
B (y)NBr(x) 9(Bs(y)NBr(z))
= max { sup  (h—h), sup  (h— ﬁ)}
0B (y)NBr(z) OBy (x)NB:(y)

= max { sup  (h—h), sup  (u— ﬁ)} <0
9B (y)NB.(x) OB, (x)NB.(y)

implying i > h on B,(y) N B,(x) and thus h > @ on By(z). O
Theorem 2.21 (Perron’s Method). The functions u. and u* are harmonic in Q.

Proof. It suffices to show that u, is harmonic on each B,(z) CC Q. Let v, € S_
be such that

uy(z) = nh_)n;o Up,.

Then

’

v, = max{vy,...,v,}

is also a sequence in S_ with u.(z) = lim,_ v;. Using Poisson’s integral for-
mula we find harmonic functions h,, € C*(B,(z)) N C°(B,(z)) with h,

’

B (z)

UnlaB, (z)°
The previous lemma shows that the functions 7, :  — R defined by

5 _ hn(y) yEBT(a:)
") {v;<y> y € O\B, (x)

are subharmonic. By definition v, = ’U;L on J2. Thus ¥, € S_. In particular,
Upn < uy. Furthermore, (¥,,)nen is still non-decreasing and bounded by supyq g so
that Harnack’s Convergence Theorem (Theorem 2.15) implies® that on B,.(z) the

sequence Uy, converges uniformly to some harmonic function h on B,.(z) with

caence ),
h(z) = us(x).

We claim h = u, on B,(z). If this was not the case then there is an z € B,.(x)
and subharmonic function w, € S_ with w,(z) = lim, s w,(2) > h(z). As above
observe that

v, < w, =max{v,,w,} € S_

so that as above we obtain a harmonic function i on B,.(x) with h < h and h(z) =
. (z). Note that this also shows h(x) = h(z) = u.(z). Now the strong maximum
principle on B, (z) applied to h — h < 0 with h(z) — h(z) = 0 shows h — h = 0 in
B,(z). However, this is a contradiction because by construction h(z) > h(z).

3Alternatively7 we may use Corollary 2.17 or 2.19.
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To conclude just observe that u. agrees on B,(z) with a harmonic function
implying. Because B,.(z) CC ) is arbitrary we see that w is harmonic in Q. An
analogous argument applies to u*. O

On arbitrary domain €2 one can show that u, # u*, in particular, u, does not
agree with g on the boundary 0f).

Definition 2.22 (Regular point). A point zg € 99 is called regular if for all
g € C°(99) and all € > 0 there are functions u§. € Sy such that |g(zo)—ug (zo)| < €.

Proposition 2.23. The Dirichlet problem is solvable for all g € C°(0S) if and
only if each point in OS2 is regqular.
Proof. The “only if” direction follows by taking the Dirichlet solution with boundary
1
data g as ug. For the opposite direction let g € 9 and uv* € S_, n € N, as in
1
the definition of regularity of zop € 0. Then max{u™,u,} € S_ for all n € N. But

1
the definition shows u™ < u, showing that

1

0 < g(zo) - u*(x0)|39 < g(zo) — ’LLE((E(J) <

S|

1
which shows g(z0) = u.(z0). Note that the same applies to u} and u*.
To see that u, is continuous each zq € 9Q (and thus u, € C°(Q)) it suffices to
show that for z,, € Q with x,, — ¢ it holds u.(x,) — u.(xo) = g(xo). Observe

ut <, <ut <wuf
where us € S% is as in definition of regularity of zg. Because both u¢ and uf are
continuous in €2 there is a § > 0 such that
[ug (z) — us(zo)] <€ for all z € Bs(xo) N Q.
Assume chose now N > 0 such that x,, € Bs(xo) for n > N. Then we obtain
Ui (25) — i (20) < U (zn) — g(20)
< Juf () — uf(2o)| + [us (20) — g(20)]
< 2e
and similarly
Ui (20) — ux(zn) < g(w0) — U (1)
< Jul(zn) — vl (20)| + [u(z0) — g(z0)]
< 2e.

Thus uy () — us(x0). O

The proof shows that it suffices to only look at u¢ € S_. More generally we
want to show that it suffices to look at solution u, obtained from Perron’s Method
with g = —d(-,xo)‘ag.

Definition 2.24 (Barrier function). A subharmonic function b € C2?(Q) N C°(€2)
is called a lower barrier at zo € 99 if b(z) < 0 for all x € IQ\{zo} and b(zg) = 0.
A superharmonic function b is an upper barrier at xg € 9 if —b is a lower barrier.

Proposition 2.25. If there is a lower barrier function b at xq € 9 then xq is
regular.
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Proof. By continuity there is a § > 0 such that |g(x) — g(zg)| < € whenever z €
Bj(xg). Furthermore, there is a k > 0 such that

2suplg|+ sup kb<O.
99 89\ Bs (<o)

Such a k exists since b < 0 on I\ Bs(zo).
Define

u:= g(xg) — € + kb.
Then w is subharmonic. In order to show that v € S_ it suffices to show u 90 <g.
Since kb < 0 we have for z € Bs(zg) NN

9(x) —u(z) = g(x) — g(xo) + € —kb=>0

and

lu(zo) — g(xo)| = €.
If, however, x € 9Q\Bs(zo) then

u(z) — g(z) = —e — g(x) + g(zo) + kb < 2sup|g| + sup kb <O.
0 O\ B (o)

An analogous argument shows that
v=g(xg) +e—kbe St

and
lv(zo) — g(zo)| = €.
]

The proof of Proposition 2.23 shows that a (lower) barrier exists at zo € 0% if
and only if zg € 0. Indeed, choose g = —d('7$0)|39 € C°(09Q) and apply the
first step of Perron’s Method. Then w, is harmonic in 92 and u, < g on 9. In
particular, u, < 0 on OQ\{zo}. Thus if x( is regular then u.(zg) = g(zo) = 0 so
that u, is a lower barrier at xzg.

In R™ there is a sufficient condition for a boundary point to admit a (lower)
barrier.

Definition 2.26 (Exterior ball condition). The domain (2 satisfies the exterior ball
condition at xo € 00 if there is a y € R™\Q and an R > 0 such that

Br(y) NQ = {xo}.

Lemma 2.27. Assume Q satisfies the exterior ball condition at xg € 02 then xg
is regular.

Proof. Observe that the function

_ 2—n __ R2—n 2
() = {|x yl n >

log Hl’;in n=2

then u is in C*°(Q2) and Au = 0 in Q. Furthermore, u < 0 outside of Br(y) and
u(zo) = 0 showing that w is a barrier at x¢ and thus z( regular. [l
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Poincaré’s Method. In Perron’s Method we replaced locally v,, by a harmonic func-
tion and then used this to conclude that locally the limit is harmonic and agrees
with wu,. Instead of using local argument and define u, via the (pointwise) maxi-
mum of subharmonic functions, we could think of replacing successively an initial
function by a function that is locally harmonic. If we do it everywhere sufficiently
often this should give a non-decreasing sequence of uniformly bounded subharmonic
functions. The limit should then be harmonic. This method is called Poincaré’s
Method.

For this let B, := B, (z,) CC £ be balls such that Q = U,enB;,. Define now a
sequence

ne=1,21,2,3,1,2,3,4,....1,....n,1,...

Let g € C°(Q) and set uyp = g. For k > 1 let hj, be the harmonic function on B,
with boundary data ug_1 ‘89 and define

Uy = {uk1 X ¢ Q\Bnk

hy S Bnk.

Proposition 2.28 (Poincaré’s Method). Assume each point in OS2 is reqular then
the sequence (ug)ren converges to a function u which is harmonic in Q and satisfies

Ulpq = g‘asz'

Proof. The maximum principle on B,,, implies that

g=ug<uy < <up <o <supg.
Q

Define

u(z) = supug(z) = lim ug(x)
kEN k—o0
Assume first g € C?(2) N C°(Q) is subharmonic in €. Then by the Replacement
Lemma (Lemma 2.20) uy, is mean-value subharmonic. Furthermore, for each = €
there is a sequence (k;)nen such that uy, is harmonic on B = Bnkl with x € B. Thus
by Harnack’s Convergence Theorem the sequence (ug, )ien converges uniformly on
B to a harmonic function h. However, this implies

u(z) = kl;nolo ug(z) = lliglo ug, () = h(z)

and thus v is harmonic on B. Because x € () is arbitrary we see that u is harmonic.
The existence of barriers at xg € 9 then implies as above that u(zg) = g(xo).
Now suppose g € C%(Q2) N C°(Q) satisfies Ag > —X. Then go = g + 5-|| - [|?
satisfies Ago = Ag+ A\ > 0, i.e. go is subharmonic. As Al|-||? > 0 we can solve first
via Poincaré’s Method with gg and obtain a harmonic function uy with boundary
data go|,,- Then solve via Poincaré’s Method with ﬁ” - ||? to obtain a harmonic

function @ with boundary data 3-|| - ||2’89.

By linearity we see that ug — @ is harmonic with boundary data g| 00

Finally if ¢ € C°(Q) then there exists a sequence of functions g, € C*(Q)
with g, < gny1, 7 € N such that ¢ = lim, o gn. Via Poincaré’s Method we
obtain a sequence of harmonic functions u,, with boundary data gn| o COnverging
monotonically to a harmonic function u with boundary data g| 59" [
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Remark. 1f D(u) = 3 [, |Vu|*dz denotes the Dirichlet energy of u then Poincaré’s
Method satisfies
D(g) > Dlur) > -+ > D(wy) > D(w)

provided that uj has a well-defined Dirichlet energy.

Generalization of Perron’s Method to solution operators. Assume Q C R" is an
open set
Solution operator:
Given any ball B,(x) CC € there is a linear operator Pp : C°(9B,(x)) —
C(By(x)) such that given g € C*(8B,(z)) and h := Pg, (,)g it holds
e if g = ¢ for some ¢ € R then
Pg.(x)(9) =c¢ on B(z).
e if g > 0 then h > 0 and h satisfies the Harnack inequality on QF =
int{h > 0}, i.e. for Q' CC Q7 there is a constant C' > 0, not depending

on h, such that
sup h < Cinf h.
Q o4
Weak subharmonicity:
A function u € C°(Q) is called weakly subharmonic if for all B,.(z) CC Q
it holds
u < Pgg on B.(x)

whenever u‘ OB, ( < g. If both v and —u are weakly subharmonic then u

)
is called weakly harmonic.

Using those ingredients it is possible to show the following generalized variant of
Perron’s Method.

Theorem (Perron’s Method). Let g € CY(09Q) and define
S ={ue C%0)|u is weakly subharmonic and u|8Q <g}.
Then the function u, defined by

uy(z) = sup u(x)
u€S_

is weakly harmonic in Q.

3. CLASSICAL MAXIMUM PRINCIPLES

3.1. Elliptic maximum principles. Let L be an elliptic operator on function in
C?(9) such that

Mo) Y &€& <> a(2)&8 < M) &
i=1 =1

and

Lemma 3.1. Assume ¢ = 0. If u € C*(Q) with Lu > 0 in Q then u does not
assume a mazimum in Q, i.e. for all x € Q it holds u(x) < supgu. In particular,
u € C?(Q) N C%Q) with Lu > 0 satisfy the strong mazimum principle

u(z) < supu = supu.
Q o0
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Proof. Assume u(x) = supg u for some z € Q. Then the Hessian D?u(x) is non-
positive. Furthermore, d;u(x) =0 for all i = 1,...,n. Hence

Lu(x) =Y a"(x)d;u(z) = tr(A(z) - D*u(z)) <0
since A(x) = (a*(z))}';=, is symmetric positive definite. O
Lemma 3.2. The function
vix=(T1,...,&Zy) > e 171
satisfies Lv > 0 provided vb < 1 and ¢ = 0.
Proof. Just note that
Lo(z) = y?a! (z) + vb' (z)

Yx
> y\(x) <1 fy|b)\((x))|) > 0.

Theorem 3.3 (Weak Maximum Principle). Assume ¢ = 0 and b < co. Ifu €
C?(Q) N C°(Q) satisfies Lu > 0 then u satisfies the weak maximum principle, i.e.

O

Sup u = sup u.
Q a0

Proof. Choose v € (0, %) and let v be as in the previous lemma. Then

L(u+ev) >0
so that
sup(u + ev) = sup(u + ev).
Q a0
Letting € — 0 implies the result. O

Corollary 3.4 (Uniqueness of the Dirichlet problem). If ¢ =10 and b < co then
Lu = Lv and u|aQ = v|aQ for functions u,v € C*() N C°(Q) implies u = v on .

Proof. Observe that
Lix(u—v)]=0

so that the maximum principle implies

sup = ol = mae {sup (= )] s =01}

— max {Sggt) = 0)] sup [~ v)]} —0

implying the result. 0

Definition 3.5 (Interior Ball Condition). A point zo € 0 satisfies the interior
ball condition if there is a Br(y) C 2 such that Br(y) N9 = {zo}.

‘We make the first observation.

Lemma 3.6. If xq € 09 satisfies the interior ball condition and the fouter) unit
normal v of O at xq ewists then v = *°z¥ where Br(y) C  and Br(y) N 5.
Furthermore, v is also the unit normal of 0Bgr(y) at xg.
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Remark. A point xo € O) satisfies the interior ball condition if zq € (R™\Q)
saisfies the exterior ball condition. Since the unit normal v of 99 at zg exists if
and only if the unit normal 7 of (M\Q) at zg exists the exterior ball condition
also gives

Lemma 3.7. Assume c=0 and b < co. For fired 0 < p < R there is a sufficiently
large o > 1 such that the function

v(z) = e~elle—vll® _ g—aR?

satisfies Lu > 0 on Br(y)\B,(y) and d,v(x¢) = —2aRe=F" < 0 for all 2o €
OBR(y).

Proof. For € Br(y)\B,(y) it holds

Lo(w) = el 1402 37 (@ (@) @ = ) (w; — 40&2 @)+ y»)]

> e oIV 402 3 (¥ (@) (s — i) (a5 — —2a2( #) -+ stip [0 >|||xi—yi||)]

2
> emlemvI 1402 (@) [l - y)? —2042( +Sup|b’“( (e —yillﬂ

n

> emelle=vl® 1402\ (2)p —2az<a +sup|bk( )IR)

eole=ul* 20\ (x) [me B Z”: (a/\’((zx)) n bR)

i=1

Since
a(x) > \x)

we may choose o > 1 so that

w55 (5 )

implying
Lv>0.

]

Lemma 3.8. Assume c =0 and b < co. Let u € C%(Q) N CY(Q) satisfy Lu > 0.
In addition, assume the following holds for xq € OS2

e the point xog € 0N) satisfies the interior ball condition
o u(xg) > u(x) for all x € Q.

Then dyu(xo) > 0 provided the unit normal at xg € O exists.

Proof. Let Bgr(y) be given by the interior ball condition of gy and pick p > 0 and
choose « such that v as in the previous lemma satisfies Lv > 0.
Set A := Br(y)\B,(y) and observe that

u—u(zo) <0 on dB,(y).
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Furthermore, v = 0 on 9Br(y). Thus there is an € > 0 such that
u—u(zg) +ev <0 on OA.
Since L(u — u(xg) + ev) > 0 the weak maximum principle implies
u—u(zg) +ev <0 on A
Assuming the unit normal v at xg € 9 exists this yield
d,u > —edy,v > 0.
O
Theorem 3.9 (Strong Maximum Princ_iple). Assume L is an elliptic operator with
c=0and b < oo. If u € C%(Q) N C°Q) satisfies Lu > 0 and u(z*) = sup, u for
some x* € §) then u is constant in €.
Proof. Tt suffices to prove that
QO ={z € Q|u(x) <u(x*)}
is empty.

Assume by contradiction Q7 is non-empty. Note by continuity Q% is open.
We first claim there is a y € Q" such that

d(y, 00%) < d(y,09).

Indeed, by assumption 9QT\0N # @. Taking a point x € IQT\IN C Q and using
compactness of 92 we may take y € Be(z0) N QT for € < 3d(z,09Q).

Let g € 9Q"be such that R := d(y,00") = d(y,z0). Then u(zo) = u(z*) =
supq v and u restricted to Q = Br(y) and zy € dQ satisfies the assumptions of the
previous lemma. Since the unit normal at zo € 9Q = dBg(y) exists it holds

Oyu(zg) > 0.

However, xg is an interior point of Q so that d;u(xo) = 0. This is a contradiction
and implies that Q7 is empty and thus u must be constant. O

We complete this subsection with the case ¢ < 0.

Theorem 3.10 (Maximum principle for ¢ > 0). Assume  is open, bounded and
connected, and L is an elliptic operator with ¢ < 0 and b < oco. Then for all
u € C?(Q)NC°Q) with Lu > 0 it holds

supu < sup ut
Q a0

where u™ = max{0,u}. Furthermore, if u(xg) = supg u > 0 for some xq € Q then
u is constant in .

Proof. Let
QO = {u>0}.
If QF = & then u < 0 so that
supu < 0 = max{0,u"} =supu®.
Q o0

If O # & then
Lu:=Lu—cu>0 onQt
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and L = L — ¢ is an elliptic operator with ¢ = 0. Thus
0 < supu = sup .
Q+ oo+
Since € is bounded, we see that Q% is compact so that there is an z € 90T with
u(zg) = supg+ u > 0.
To see that xo € 0N observe that every point y € 9(Q\QT) satisfies u(y) < 0.
Thus

T €ONNONT
and
supu = sup u=u(x)
a0 QNI+

which implies supg, u = supgq ut as u™ = u on QN INT.
If u(xg) = supg u > 0 for some zy €  then zo € QT and u is constant on the
connected component Qjo containing xg. Thus

QF, = u'((=00,0)) = u™" ({u(z0)})

is both closed and open in 2. Hence by connectedness 2 = Q;m i.e. u is constant
on €. O

Corollary 3.11. Assume ¢ < 0. If v,u € C?(Q) N C%Q) with Lu = Lv and

u!aﬂ :v’aﬂ then u = v on S.

Proof. Since L(u — v) = 0 we see that

sup(u —v); < sup(u—v)t =0
Q a0

and

sup(v —u)y < sup(v—u)t =0
Q a0

which shows supg, |[u —v| =0 and thus u = v. O

3.2. Parabolic maximum principles. In the following we assume L is an elliptic
operator so that 9; — L is a parabolic operator on @ = (0,7) x Q.

Lemma 3.12. Assume ¢ = 0. If u € C%(Q) with &; — Lu < 0 in Q then u does not
assume a mazimum in Q, i.e. for all x € Q it holds u(x) < supgu. In particular,
u € C?(Q)NCQ) with Lu > 0 satisfy the strong mazimum principle

u(t,z) < supu=supu for all (t,z) € Q
Q 'Q

where 8'Q = (0,T) x 00U {0} x Q is the parabolic boundary of Q.

Proof. Define Q" = (0,7") x Q for T € (0,T). Assume u(ty, zo) = supg u for some
(to, o) € Q. Then
Owu, Qyu =0
and
0> dwu(t,x) — Lu(t,x) = —tr(A(t,z) - D>u(t,x)) >0
which is a contradiction. Here DZu(t, z) denotes the Hessian matrix (0;;u(t, x))

in the space variables only.
Thus

n
ij=1

sup u = sup u.
Q' oQ’
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By the same argument u(7",z) < supg u so that

Sup u = sup u.
QI 6/Q/

The claim follows by letting 7" tend to T. O

Theorem 3.13 (Weak Maximum Principle). Assume ¢ =0 and b < co. Ifu €
C?(Q) N CY(Q) satisfies Lu > 0 then u satisfies the weak mazimum principle, i.e.

Sup u = sup u.
Q 8Q

Proof. Note that for v(t,x) = —t and € > 0 it holds

O¢(u + ev) — L(u + ev) < 0.

Thus
sup v = lim sup(u + ev)
Q e—0 Q
= lim sup(u + ev) = sup u.
e—0 'Q 'Q

By the same argument we also obtain the weak maximum principle if ¢ < 0.

Theorem 3.14. Assume c <0 and b < co. Ifu € C*(Q)NC°(Q) satisfies Lu > 0
then u satisfies the weak maximum principle, i.e.

supu < supu™.
Q 'Q

Corollary 3.15 (Uniqueness). Assume ¢ <0 and b < co. If yu — Lu = 9yv — Lv
for function u,v € C?(Q) N C°(Q) with u‘an =50 then u = v on Q.

For the strong maximum principle we look at the following function: Given
(s,y) € Q and R > 0 define

v(t, ) = emar(te) _ g—aR’

where in the set
R 2 2
Quen={(t0) € Qe —yll > T oo < B0 < s
1
where 7(t, ) = (||lz — y||? + n*(s — t)) * with n* to be determined later on.

As in the elliptic case it is possible to force v to be a parabolic subsolution.

Lemma 3.16. Assume L is uniformly elliptic, c = 0 and b < oo (thus sup}_; [b*| <
oco. Then it holds

(3,5 — L)U <0
for sufficiently large o
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Proof. Tt holds

(0 —Lyo =" l“‘aQZ(a%m i) (2 +2aZ () + 0 (i = yi) + 1)

< 2aeo"" [ 20\ ||z — y||* + Z < )+ Sup 08 (2)|[|l2i — wil| + 1)

< 206" [—204/\]% + Z (a”(x) + sup [b*(z)|R + 1)
i=1

=1

which is negative for « sufficiently large. O

Note that the set @, s g is a cone with tip at (s — 1;—;, y) and base {s} x Br(y).
Furhtermore, the construction shows
Oyv(z,8) <0
for v = ﬁ where 0, denotes the derivative in direction v. We want to this to
show that at boundary {s} x dBg(y) of the base and maximum point must have

non-vanishing derivative.

Lemma 3.17. Assume L is uniformly elliptic, c = 0 and b < oo. Let u € C?(Q)
satisfy Oy — Lu < 0 and assume the for (to,zo) € Q x (0,T) there is a (y,to) € Q
and R > 0 such that for ||xo — y|| = R it holds

Q’y,to,R - Q

(to,z0) € OQy to.R
and u(to, xo) > u(t,z) for all (t,z) € Quy.to,r- Then dpu(t,xo) > 0 where v =
O, 7757

7 lz—yll

Proof. Observe that

Q.01 = {(t,2) € Q[r(t,z) = Rt <t} U{(t,z) € Qlllz —yll = g < to}.
=51 US2
and
v=0 on S
v < e—ap’ _ gmak? on Ss.
Since

u— u(to,x0) <0 on Sy
u—u(tg,z0) <0  on Sy
and Sy is compact
(0 — L)u —u(to, x0) + ev <0 in Qyuy r
u— u(to, o) +ev <0 on 'Qy.t.R-

for sufficiently small € > 0.
Then the weak maximum principle implies u — u(to, o) + ev < 0 in Qy 4,,r SO
that
Ozu > —edyv > 0.
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d

Theorem 3.18 (Strong Parabolic Maximum Principle). Assume L is uniformly
elliptic with ¢ = 0 and b < co. If u € C*(Q) N C(Q) satisfies (0; — L)u < 0 and
u(t*, x*) = supg u for some (t*,2*) € Q then u is constant in Q.

Proof. Define an open subset of @) by
Q" ={(t.z) € Qlult,x) <u(t",2")}.
We need to show that QT is empty. Assume this is not the case then there is an

(y,5) € Q" and € > 0 such that (y,s') € Q% for all s’ € [s — ¢, s].
By compactness of @) there is a maximal 1 > 0 such that for R = /e -7

Qy,s,R C Q+~
As in the elliptic case we can find (y, s) € Q% such that
0Qy 2 RNOQ = 2.
In particular, there is a point (fo,x0) € 9Q, s = g With u(to, xo) = u(t*,z*). Note

that the choice of R = /€ -7 ensures ty # s — € and xy # y.
Then for R’ = |ly — 20| > 0 it holds

+
Qyion r CQysnrCq

and (tg,zg) € 0Q In this case the previous lemma yields

y,to, B R
Opu(ty, o) > 0.
However, (tg, ) € @ is a maximum point of u so that
Opu(to, zo) =0
which is a contradiction. O
4. SOBOLEV THEORY IN R"

4.1. Banach spaces.

Definition 4.1 (Banach space). A complete normed space (X, || - ) is called a

Banach space, i.e. X is a vector space and || - || is a norm such that the induced
metric d defined by dj.(v,w) = |lv — w|| makes (X, d).) into a complete metric
space.

Remark (Construction of Banach spaces). Using completion we can obtain from a
general normed space (X, || - ||) a (unique up to linear isomorphism) Banach space
(X, |- 1) such that X seen as a subset of X is dense in X and the norms || - || and
|- |I" agree on X.

4.2. Function spaces. Let A C R”, e.g. A= Qor A =, and define the following
spaces:

e C%(A) = {space of continuous functions on A}.

o CH(A) = {u € C°A)|dru € C°(A) for all multi indices I with |I| < k}.

o for a € (0,1]: C¥*(A) = {u € C°(A)| sup, yea % < oot Ifae
(0,1) the space C%*(A) = C*(A) is called the space of Hélder function and
C%1(A) is called the space of Lipschitz functions.

CFY(A) = {u € C*(A)|0ru € C**(A) for all multi indices I with |I| = k}.
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o LO(A) = LO(A,\"| 1) = {space of equivalence classes of measurable functions on A}
(two function u,v € L°(A) are equivalent if )\"|A({u #0v})=0,1e u=v
almost everywhere.
o for p € (0,00): LP(A) ={u € LO°(A)| [, [u[Pd\™ < oo}
o L®°(A)={ue L°(A)| esssup |u| < co}.
On each of those spaces there is a natural norm making the subspace of functions

with finite norm into a Banach space®.

o [[ullco = sup e u(z)]
o [Jullcr = SUPgeA,|I|<k |0ru(z)].
o [lullcon = max{sup,c 4 [u()],sup, yea “HEZHL

1
o [[ullp = (f [ulPdA™)*, p € [1,00).
o ||ullco = esssup |ul.

4.3. Properties of LP-spaces. The classical LP-spaces are the space LP(A) =
LP(A,\") for a Lebesgue measurable set A C R™ and A" the Lebesgue measure.
Given two LP-spaces we can define the LP-product of two LP-spaces LP(A) and
L?(B) (possibly A = B) as the product vector space LP(A) x LP(B) equipped with
the following norm

=

1.9)p = (17120 ) + gl )

It is not difficult to see that (LP(A) ® LP(B),||(:,-)||) is a Banach space and very
similar to the regular LP-spaces. Furthermore, an iterated construction also shows

that
n
&) L7 (A))
i=1
with corresponding norm is a Banach space.

Definition 4.2 (r-uniform convexity). A Banach space (X, | - ||) is said to be
r-uniformly convex if there is a Cp, > 0 such that for all v,w € X it holds

v+ w P

2

1 1
+ Cpllv —wll” < Slofl” + Flw]]”-

Lemma 4.3. For every p € (1,00) the LP-spaces are r-uniformly convex for r =

max{2,p} and
p—1
T p<2
C, = 14 5
L p>2

Proof. The statement for p > 2 appeared in the exercises. An accessible proof can
be found in Sharp uniform convezity and smoothness inequalities for trace norms
by Ball-Carlen—Lieb in Inv.Math. (1994). |

Proposition 4.4. Let C be a bounded, closed and convex subset in an r-uniformly
convexr Banach space. Then

4If A is not compact then C”“(A)7 k € N, might contain unbounded functions. The set
of bounded continuous functions is usually denoted by C{(A). Furthermore, for C%%(A) one
also needs to either add the C°-norm (resp. take the maximum of the C%-norm and the C%-
seminorm).
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Corollary 4.5. Let (C;)icr be a net of bounded, closed and convex subsets in an
r-uniformly conver Banach space X such that C; C C; whenever j > i. Then

n C; 75 .
iel
Proof. We only prove the result for 7 = N. We define a map r : X — [0,00) by

r(x) =sup inf |z — z|.
(@) = sup inf o 2]

This implies that there is a sequence (z,)nen With z, € C,, and
1
r(x) —ry| < —
(@) ~ral <

and
1
|z — zp|| <7+ —
n

where r, = inf.cc, ||z — 2.

Since z, € C,, whenever m > n we see that r(z) is bounded. We claim that (z,)
is a Cauchy sequence. Indeed, since X is complete, C,, is closed and {2z, }rm>n C Cp,
we see that 2z, — z for some z € X and z € (), for all n € N. Thus z € ﬂneN Chp
which yields the result.

It remains to show that (z,)nen is Cauchy. Observe first that

and that (r,)nen (and hence (r%),en) is Cauchy. Fix € > 0 and let n,m > % such
that ), — 7] <e. Then uniform convexity implies

Tngnx,m

1 1 Zn + 2
Cullzn = 2l < Lz = 2l 4 e — 2l = [l = 222
1 2
< i(Tfn —rp)+ o < 3e.
Thus we see that (z,)nen is Cauchy. O

Corollary 4.6. For every closed convex subset C' of an r-uniformly convexr Banach
space (X, || -]|) and all u € X there is a unique uc € C such that

—uc|| = inf [ju—v].
lu— ol = inf lu o]

Proof. Let ro(x) = inf,ec ||u — v]|| then

Cn = Brc(z)-i-%(‘r) NncC

satisfies the assumption of the previous statement. In particular, C' = N,enCh + g
which implies that there is a u¢ € C with the required properties. To see that
uc is unique just observe that for any other v € C' it holds H% e C. However,
uniform r-convexity (even weak, the strict convexity of the norm) implies that

Crllv —uc||” <0
which means v = uc. O

Remark. The proof of the previous two result are “equivalent”, i.e. it is possible to
prove the latter without the former and then give a proof of the former using the
statement of the latter.
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4.4. Sobolev spaces and minimizers of quadratic functionals. Using Green’s
formula it is possible to show that a function u € C?(Q) N C°(2) is a harmonic
function in © with u|aQ = g if and only if it is the minimizer

v»—)/ |Vo|2dx
Q

among all function v € C?(Q)NC%(Q) satisfying v|,,
0 for any such v this is equivalent to saying that

/|Vu\2dx§/|V(u+<p)|2dx
Q Q

for all functions p € C?(2) N C°(Q) with go‘ag. By density argument one may
equally take p € C2°(2), i.e. ¢ is smooth with support compactly contained in €.

A similar argument to so-called elliptic operators in divergence form with b¥ =
¢ = 0 where we say L is in divergence form if for u € C%(Q)

=g. Since v—u

= U”(‘)Q o =

Lu = Z @(a“@iu).

ij=1

Now u € C?(Q2) N C%(Q) satisfies Lu = 0 in Q and u‘ag = g if and only if it is the

minimizer
RS / Z x)0;u(z)dz
i,j=1
among all function v € C2(€2) N C°(Q) satisfying v|,, = g. Again this is

equivalent to saying that

/Z x)0;u(z)Ou(z d:v</ Z + ) ()0 (u + ¢)(z)dx

i,j=1 3,j=1

= “’aﬂ

for all functions ¢ € C?(2) N C°(Q) with g0|8Q (resp. ¢ € C(Q)).

Remark (Operators in divergence form). If a¥ € C'(Q) then via product rule a
divergence operator can be brought into non-divergence form. Note that in general
the bF-terms are non-zero and the arguements of this section require b* and ¢ to
be zero, see however the section on the Lax—Milgram Theorem for more general
results.

Observe that for uy,us € C*(Q) and A € (0,1) it holds
EA’Q((l — )\)ul + /\Ug) = (1 - )\)EA’Q(ul) + )\EA’Q<’U,2) — (1 — /\))\EA’Q(ul — UQ).

Thus E4 is a convex function. Furthermore, if A : Q — (0, 00) is the ellipticity
constant of L then

B uy —up) > /)\(x)|V(u1 —ug)(2)|?dz > 0

unless u; = ug + ¢ for a constant ¢ € R. Thus the convexity inequality above is
strict if the difference of u; and wus is non-constant.

The above argument shows that we should look at minimizers of E4. In
particular, we have to show that the set

{ue C*(QNCQ) | E(u) = weicrg(mE(uﬂLsﬁ)}
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is non-empty. Given a function ug with u0| a0 = g we can always find a sequence
u, with un|6Q such that lim, . E(u,) = inf cce ) E(uo + ¢). However, the
sequence (uy,),en might not contain any convergent subsequence (in C2(Q2)NC?(12))
as the bounds of F(u,,) do not imply any bounds on the first and second derivatives®.

To circumvent we may observe that E4 satisfies the parallelogram inequality.
Hence it seems natural to look at

2

@ :ues /Q 3" @i @)0u(w)dyu(a)da

ij=1

this mapping from {u € C'(Q)|®(u) < oo} to [0,00) satisfies all properties of a
norm but the definiteness. Indeed, as observed above if u; = us + ¢ for a constant
c then ®(u;) = ®(uz). A natural choice is to add the L?-norm of u and define

1

2

Uy /Q\u| alar:—l—/Q Z a* (z)Oyu(z)Oyu(x)dz

4,J=1

This mapping gives a norm on the vector space Y = {u € C1(Q)|¥(u) < oo}.
Thus we can take the completion of (Y, V) to obtain a natural Banach spaces.
The only problem with this construction is that the completion might depend on
(@ : Q — R)7;—1- As we are only interested in existence of minimizer in the
Banach space we may replace the norm by a more suitable one.

Definition 4.7 (uniformly equivalent). A two norms || - ||; and || - |2 on a vector
space X are said to be uniformly equivalent if there is a constant C' > 1 such that
for all v € X it holds

C™ ol < Jlvllz < Cllolls-
The concept of uniformly equivalent shows that a Cauchy sequence with respect

to one of the norms is also a Cauchy sequence of the other one. Hence we obtain
the following lemma.

Lemma 4.8. Given any two uniformly equivalent norms || - |1 and || - |1 on a
vector space X the completion with respect to either of the norm will give the same
completion X and the naturally associated norm |- ||1 and || - ||2 are still uniformly

equivalent norms on X. In particular, they induce the same complete metric topol-
ogy on X.

Note that for each element v € X and every v, — v with v, € i(X) where ¢ is
the natural embedding of the completion process it holds ||v||; = lim ||v]l;.

Recall that the elliptic operator is uniformly elliptic if there are constant A\, A €
(0,00) such that

ME,€) < (& A(@)€) < AL, ).

Thus for a uniformly elliptic operator we may show that

C7(u) < lullwrz < CU(u)

5ho obvious bound
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where C? = max{\~! A} and

Jullwz = ( [ upas [ Zz:l;(aiu)?dx)

Thus the two norms are equivalent. We call || - |12 the (W12-)Sobolev norm
(sometimes also H!-norm).

2

Definition 4.9 (First Sobolev space). The completion of
{u S Cl(Q) | ||u||W12 < OO}

with respect to the norm || - |[y1.2 is called the first (L2-)Sobolev space and is
denoted by Wh2(Q).

Since the Sobolev norm is equivalent to the norm ¥ we can also extend the
functional B4 to all function® in W12(Q). Indeed, it holds u, — u in W1H2(Q)
then ||u, — ulj2 — 0 and ¥(u,) — ¥(u). Thus observing that

EA2 (u) = W(u)? — [|ul3
for u € CH(Q) N WH2(Q) we can choose any u, € C*(Q) N WH2(Q) with u,, — u €
W12(Q)) and uniquely define
EAQ(U) = nh_{I;O‘IJ(Un) — [lunlf3-
Alternatively we may observe the following.

Lemma 4.10. There is an isometric’ embedding
n
i WH(Q) —» Q)L (Q)
i=0

satisfying
i(u) = (u, 01w, ..., 0hu)
for all u € CH(Q) NW12(Q).

Proof. Just observe that i on C1(Q) N W12(Q) is an isometry which extends
uniquely to its closure which is by definition W12(Q). O

Thus we see that for u € C*(Q) N W1H2(Q) it holds d;u € C°(Q) N L3(R) so that
for any u € W2(Q) there is a uniquely defined object d;u € L?(2) such that for
all u,, — u in WH%(Q) with u,, € C1(Q) N W2(Q) it holds d;u,, — d;u in L?(£2)
(IMPORTANT: Currently d;u for u € W2(Q) is just a suggestive notation. Later
we will show that d;u satisfies indeed the properties of a partial derivative hence
justifying the use of d;). As uniform ellipticity implies that ¢/ is bounded in © the
functional E4 satisfies

AQ0Y = naijxiuxiux T.
A2 = [ 3 @ @)dala)ou(w)d

i,j=1

Another observation is the following.

6As W12(Q) behaves similar to L2(Q) the statement v € W12(Q) is a function is meant to

say that the measurable function u represents an equivalence class (of functions) in W12(Q).

7n0rm-preserving
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Corollary 4.11. The space W12(Q) is a Hilbert space. In particular, it is 2-
uniformly convex.

Now we have defined E4*? on an appropriate Banach space. The next step is to
find a minimizer given certain boundary data. As we currently do not have “trace
operator” which are maps from W12(Q2) to L*(Q), we try to find a u € W12(Q)
that is minimal among all perturbations ¢ with zero boundary data.

Definition 4.12 (Soblev space with zero boundary data). The space Wy'2(Q) is
defined as the closure of C1(Q) N W12(Q) in W2(Q).

It is easy to see that (WOLQ(Q)7 I |lw1.2) is a closed subspace of the Banach space
W12(2) and thus a Banach space as well. Furthermore, for each v € W,**(2) there
is a sequence v, € CL(Q) N W12(Q) with v, — v in WH2(Q). In particular, by
continuity of E4** we see that

EAY(y) < EA%(u+v)  for all v e Wy2(Q)
if and only if
EAY(u) < EAYu+ @) for all ¢ € CH(Q) N W, %(Q).

Thus given ug € WH2(Q) we may change the minimization problem to find v €
Wy2(2) such that

By v EA%(ug +0).
Lemma 4.13. For each € > 0 the sets
C. = {veW;?(Q)| By (v) < inf Ey, + €}

is closed and convex with C. C Co for € < e. Furthermore, C. # & for ¢ > 0 and
each element in Cy is a minimizer of E,, .

Proof. Convexity follows by observing that
Euo((l — )\)Ul + /\’02) = EA’Q((l - )\)(UQ + Ul) + /\(UO + UQ))
< (1= NE(ug +v1) + AEY? (ug + v2)
= (1= NEL?(01) + AEL" (v2).

Uuo

Furthermore, if v,, — v in Wol’Q(Q) then ug + v, — ug + v in WH2(Q). Thus
continuity of F4* implies that F,, is continuous thence

CE = E,;;((—oo, 6])
is closed. O

If C¢ is bounded then we would be allowed to use Corollary 4.5 to show that
Co=()Cr#2
neN

which yields the existence of a minimizer for E,,.
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However, in general we cannot ensure that || - ||y1.2 is bounded on C. as we have
only the following for each v € C,

o122 < 2o + 0l3s + 2lluo]Zn
<4 / ol + 4 / (0[2dz + 20 (0) + 2l[uo 3.2
Q Q
S 6””0”%/[/1,2 + 2A(1nf Euo + 6) +/ |U|2d$.
Q

Thus in order to ensure that C, is bounded in W;"*(Q) it suffices to bound the
L%(Q).
Surprisingly the following statement holds:

Theorem 4.14 (Weak version of Gagliardo—Nirenberg Sobolev inequality). For all
v e W)2(Q) there is a constant C = C(n) such that

/ v|2dz < c/ > |0v]*da.
Q Q=1

Before we prove this theorem we want to show that C. is bounded. Indeed it
holds

101200 < 6jup||Zyrs + 2A(0f Eyy + ) + / jv[2dz.

< 6lluo|Zss + 2A(inf By, + €) + 0/ S |0rofdr.
Q=1
< 6||uo||fyrz + 2A(nf Eyy + €) + 2CEy, (v) + 2C|ug |32
< (6 +2C)||uo 312 + (2A + 2C) (inf Ey, + €)
which implies that C¢ is bounded.

Corollary 4.15. If L is an uniformly elliptic operator then for any ug € WH2(Q)
there is a unique minimizer of the function E,, = E*4%(ug + -).

Proof. The existence follows from 4.5 using boundedness of C implied by Gagliardo—Nirenberg.
To observe uniqueness, assume E,,(v) = E,, (V") for v,v’ € Cy. It suffices to show
that ||lv — v||y1.2 = 0.
By convexity of Cy we see that %v + %v’ € () so that the parallelogram identity
for B4 yields

)\/ Z |0 (v —v")|2dx < / a9;(v —v")9j(v — v')dx = 0.
Qi Q
Since v — v’ € VVO1 2(Q) Gagliardo—Nirenberg implies

/|v—v’|2dsr:§0/Z|8¢(v—v')\2dag:0
@ Q=1

showing that ||v — v'||f2 = 0. Thus ||jv — v||y1.2 = 0 proving the claim. O

Instead of proving the weak version of Gagliardo—Nirenberg let us prove the
following more general statement.
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Definition 4.16 (First LP-Sobolev spaces). Let p € [1,00) and define a mapping

on C1(Q) by
le]|prie = </u|l)daz+/2|€)iu|?dx>
i=1

Then the first LP-Sobolev space W1?(€) is defined as the completion of the vector
space X = {u € CY(Q)|[Jullwr2(q)} equiped with the norm | - |lyy1.». Similarly,
WP () is the closure of C1(Q) N WHP(Q) in WHP(R).

Remark. Again it is possible to isometrically embed W1P(Q2) into ®7_;LP(Q) to

obtain objects O;u € LP(§). This embedding then shows that the norm | - |, is
p/-uniformly convex if p € (1, 00) and p’ = max{2, p}.

Theorem 4.17 (GagliardoNirenberg Sobolev inequality). Let v € W, *(Q). For
all p € [1,n) there is a constant C, = C(n,p) such that

( |’U|p*d.13) ’ <C, (/ Z 8ivpda:>
Q Qi

* np .
p = prE[l,’Il).
n—p

where

In order to prove the theorem we need a couple of technical lemma. For nota-
tional purpose we denote by &; the vector obtained from z = (x1,...,2,) € R" via
remove the i-th coordinate, i.e. &; = (T1,...,Ti—1, Tit1,---,Tn)-

Lemma 4.18. Assume F; : R*™' — [0,00) fori=1,...,n are bounded continuous®

functions with compact support. Then

1
n—1
/ I} Fy(2;) 7T 1d9:<H71(/ lﬂ(y)dy) .
n Rn*

Proof. In the following z € R™. Then we write | F;(9;)dyz, ¢ > 1 for

/Fi(yl,l‘g, e ,.231‘_1,1‘,‘_’_1, . ,Qj‘n)dyl.

Similarly,

/Fi(ﬁi)dmdyz :/Fi(y1,y275€3,~-~7$i717$i+17'--7$n)dy1dy2~

Using this notation we observe that integrating over the first coordinate and using
the generalized Holder inequality applied to the last n — 1 terms yields

/HF Ui) " 1dy1 Fi(#,) /HF &)= ldyl

< R ] (/Fi@adyl)’il .

=2

80ne may assume measurablilty using Fubini’s theorem.
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Integrating this inequality over the second inequality yields

//ﬁFi(gi)nlldyldyg - (/FQ(%)CZ%)ﬁl
e ) o

<(/ Fz(@)z)dzn) o
() i o)

where we applied again the generalized Holder inequality to the last n — 1 terms.
Then a similar argument with y3 gives

///ﬁFi@i)nl—ldyldyﬂygS (//Fl@l)dyzdyi%)nil

: (//1772(1?2>dy1dya)n1
: <//F3(233)dy1dy2) o

n

H (///Fi(?)i)dmdyzdm)?fl

>4

where

I ={(i1, .. yix) € {1, ... k} |0t # i}
Continuing with y4 to y, yields

b -1
/Hn 1F yz " ldy H(/ dyz)

which is the claim. O

Lemma 4.19. For v € C1(Q) N WH(Q) it holds

v|71de ! S/ O;v|dwx.
(fprevae) © < [ $jow

Proof. For x = (z1,...,2,) € Qand i =1,...,n it holds

lu(z)] < / 100l (1, s s )y

— 0o

so that

1

< (H?=1 / |aiu<yi>dyi) o

Ju(z)[7=3
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Define now Fj;(#;) = [ |0;u(y;)|dy;. Then the previous lemma shows

/\u nldx</HF gﬁ(/R dy)"ll.

Observing that

shows that

/|u(x>|%da:g /Z|8ju|da:
Qi

proving the result. O

Proof of the theorem. By density it suffices to show the result for functions C}(Q)N
WLP(Q). The previous lemma shows that it is true for p = 1 and with C(n,1) = 1.
For p € (1,n) and v > 0 observe that |u|? € C}(2) whenever u € CL(Q).
Furthermore, it holds |0;|u|”| = ~|u|"~!|d;u].
Thus using the result for p = 1 applied to |u|” gives

(Jr=)" < [ Lo

= [Aur= S e
j=1

<4 ( / u|<“>v”1dx) [0
Jj=1

10

If we now choose 7 such that -I% = (y — 1)— then v = —p > 0 and p*
- — T 50 that
P n-p p

(Jir)™ < (fur) " (] > iopa

To conclude observe that
n—1 p—-1 (m-1p-np-1) n-p 1

n D n np p*

(fr) ()

Below we will provide a proof via embedding theorems of the Riesz potential
operator whose proof depends on the Hardy—-Littlewood Maximal Functional The-
orem.

proving

pfl n P

<y /Z\ajuwx
Jj=1

O
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4.5. Weak derivatives. From the definition of 9;u as the i-th coordinate of the
natural embedding i : W(Q) — @, LP(2) we see that 9;(au + fv) = adiu +
BO;v and ||O;ull, < |lullwrr. Thus 0; : u +— O;u is a bounded linear operator from
WLP(Q) into LP(2).

Lemma 4.20. For all u € WHP(Q) and all ¢ € CX(Q) it holds

/u-@mdmz—/@iu-@dw.
Q

Proof. Observe that the result holds for all u € WH?(Q) N CY(Q). If u, — u in
Wtp(Q) for u, € C1(Q) N WLP(Q) then u,, — u and d;u, — d;u in L?(Q) which
implies

n—oo

/ u-Oypdr = — lim [ wu, - O;pdx
Q

n—oo

=— lim [ Qju, - pdxr = 7/8Z-u - pdx.
O

Definition 4.21 (Weak derivative). A function g; € L}, () is called a weak i-th
coordinate derivative of u € L}, (Q) for some i € {1,...,n} if for all p € CL() it

holds
/ gi - pdx = /u - Oypde.
Q

Remark. By abuse of notation the index i of g; denotes also “which” derivative is
to be considered.

It is not difficult to see that weak derivatives are unique. Furthermore, if u €
WLP(Q) then d;u is a weak coordinate derivative of u. Furthermore, if u = v on
some subset Q' CC Q and ¢; and h; are weak derivatives of u and resp. v then
gi = h; on Q. In particular, if u has compact support then any weak derivatives
has compact support as well.

Lemma 4.22 (Chain rule). For all u € W'P(Q) and a € C'(R) with «(0) = 0
and || < M for some M > 0 it holds a(u) € LP(Q) and o/ (u) - Oju is a weak
deriative of a(u).
Proof. The result holds for function u € C*(Q). If u,, — w in WHP(Q) for u,, €
CHQ) NWLP(Q) then u,, — u and d;u,, — dyu in L3(Q). In particular, there is a
subsequence (ny)gen such that u,, — u and J;un,, — 0;u almost everywhere.
Now
la(un) = a(u)lly < Mllup — ullp
implies that (o(un,))nen is a Cauchy in LP(Q) converging to a(u). Note that
o/ (u) - yu is clearly in LP(€). Thus we only need to show o'(u) - d;u is a weak
derivative. For this let ¢ € C1(Q) then by the Dominated Convergence Theorem
it holds
/o/(u) O - pdr = lim | o' (up,,) - O, - pdx

k—o0

= lim [ d;a(uy,) - pdx

k—o0

k—o00

=—lim [ a(up,) - Oipdr = — /a(u) - Oipd.
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d

Lemma 4.23 (Product rule). If ¢ € CY(Q) with ||¢||cr < co and g € LP() is a
weak derivative of u € LP(QY) then h; = 0;¢ - u+ (- g € LP(Q) is a weak derivative
of ¢ - u.

Remark. The result holds more generally for w- v for general u,v € L ()N LP(Q)
admitting weak derivatives.

Proof. Let p € C}() then ¢ - ¢ € CL(Q) so that
—/g-ui“)igodsc:—/u-ai(g-cp)dx+/8ig-u~godx

:/C-g-godx—l—/&(-u-godx.
O

Using the weak topology of W1P(Q) and the fact that | (u)|w1ir < M||a(u)||
for all u € C1(Q) we may even show that a(u) € WHP(Q). Instead of this we show
the following theorem.

Theorem 4.24. A measurable function u : Q — R is in WLP(Q) if and only if
u € LP(Q) and for each i € {1,--- ,n} there is a weak derivative g; € LP(2).

Note that u € WP(Q) if and only if it can be | - ||yy1.r-approximated by C*-
functions. The theorem is saying that LP-functions with weak derivative in LP
always admit C'-approximation. This was an open question until Meyers and
Serrin proved in a paper titled “H = W” in 1964.

In order to prove the theorem we need the concepts of cut-off functions, mollifiers
and smooth partitions of unit. For this define the following function

1 _
Le =7 |z < 1
(p(;{j) = “n
0 =] > 1

where

— 1 _
Cn:/ e 1-l=I”dx,
B1(0)

ie. [pn pdr =1. Also define p.(x) = e ™p(z/c).
Given a function u € L}, (R") define

loc

wla) = [ pda= o)y

Proposition 4.25. For all € > 0 the functions ue are C*°(R™) and
supp ue C SUpp u + supp ¢ = supp v + B, (0)
Furthermore,
[ellp < llullp-
Finally if g; € LP(Q) is a weak derivative then (g;)e = O;u..

Proof. The first two statements follows by exchanging integration and differentia-
tion.
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The next claim follows from the fact that

uc ()PP = ] [ et -ty

< / el — 1) |u(y)Pdy.

[1ulras < [ [ ewluts - pagds
< [ew) [ tutz - plrasdy
/L,OE /|u|pdxdy—/|u|pda:

Furthermore, the last claim let 1 € C}(R™). Then again using Fubini

/(gz-)e pdr = /soe(y)/gi(w—y)w(fv)dwdy

_ / () / w(z — )0 (x)dady

= /u6 - Opd.

Lemma 4.26. If u € LP(R™) has compact support then

Thus

llue —ullp =0 ase—0.

Proof. Let u,, — u in LP(R) such that u, € C%(Q) where (2 is a bounded open
subset with suppu C 2. It is easy to see that (u,)e — u, uniformly in Q. For a
given § > 0 choose n 5 N such that

[ = nlp < 6.
Now it holds
lii% l[ue — ullp < lg% (lue = (un)ellp + [[(un)e — unllp + llun — ullp]
< i [ u)e — s + 2t — ] < 25
Since § > 0 is arbitrary we see that ||u. —ul[, — 0 as e — 0. O

Corollary 4.27. For all u € LP(R™) with compact support admitting weak deriva-
tives g; € LP(R™) fori = 1,...,n there is a sequence u, € CL(R™) such that u, — u
and O;un, — g; in LP(R™). In particular, v € W1P(R™).

In order to prove the theorem we need to split a given Sobolev function into
summands with compact support in €.

Definition 4.28 (Partition of Unitity). Let © be open and {Q, },en be an locally
finite covering of bounded sets. A family of function 7, € C2°(£;) is called a
smooth partition of unity subordinate to {Q, }nen if

Znnzl.

neN
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Remark. Note that local finiteness of the covering implies that for each z € () there
are finitely many nf,..., M2y € N such that € Q2. In particular, ) n,(z) =

S g ().

Proposition 4.29. For each locally finite bounded covering {Qn}nen of an open
set Q with 0, CC ) there is a smooth partition of unity subordinate to the covering.

Proof. Given a locally finite covering we can finite open set V,, CC €, such that
{Vi}nen is still a covering of Q. Just observe that given any covering {U, },en of
Q with U,, CC Q and ng € N there is an € > 0 such that

{Uns 3 U {Un}nstng
is still a locally finite covering where
U,f ={x € Uy, | d(z,0U,) > €}.

Thus the sets V,, = Q" can be constructed inductively.

Define now
Un = (XVTL)%
and
— Un
= D men Um

By construction, u, € C°(),) and the summand in the definition of »,, consists
of only finitely many w,,. Furthermore,

_ ZneNun(m) _

neN
(I

Proof of the Theorem ?7?. It suffices to show that any function u € LP(Q2) with weak
derivatives g; can be approximated by C'-functions wu,, such that d;u,, converges to
gi-
Define
1 1

n—1mn+1 )b
Then {Q, }nen is a locally finite covering of 2 and each ,, is bounded. Thus there

is a partition of unit 7,. Observe now that for sufficiently small €, the function
(- u)e, is in O (U7 10) and

Q, ={z€Q]d(z,00) € (

)
11 wen =1 ullp, (i - w))e,, = il < 57

where Al = 0;np - u + 1y - g; € LP(Q) is the weak derivative of 7, - u. Observe that

giZZEInGNh?'
Thus us = >, cn(n - 1), is well-defined and in C'*°(£2) and it holds

lus —ully <> N0 - w)e, — o -ull, <6 27" =4

neN neN
1005 = gilly < S 103 - w)e, — hill, <8 27" =35
neN neN

Letting § — 0 proves the result. ([
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4.6. Higher order Sobolev spaces.
Definition 4.30 (Higher order Sobolev spaces). Let u € C*(Q) then we can define

fulwes = | 3 [ forulds
Q

1<k

where I = (i1, ,i) is a multi-index and dju = 0;,...;,u and if |I| = 0 then
oru = u.

The k-th order Sobolev space W¥*?(€2) is the completion of {u € C*(Q) | ||ulyr» <
oo} with respect to || - ||ye.s-

Similarly, the space Wé“’p(Q) is the closure of C¥(Q) N WHP(Q) in WFP(Q).

Remark. Again there is a natural embedding of C*(Q) N W*?(Q) into
Ng
Qe
i=0

where Nj, = Y% n' which is defined by

U — (61u)u|§k.

This extends naturally to u € W¥*?(Q) with well-defined objects Oru € LP(Q),
|I| < k.

Lemma 4.31. Let u € W*P(Q). Then for all |I| < k and o € C*(Q) it holds

/81u~g0d:v: (—1)‘”/u~81g0dx.

Definition 4.32 (Weak k-th derivatives). Given a multi-index I with k& = |I| > 0
we say gr € L},.() is a weak k-th order derivative of u € L} () if for all ¢ €

loc
Ck(Q) it holds
/ gr - pdx = (—1)’“/ u - Orpdz.
Q Q

Remark. By abuse of notation, the index I of g; denotes also “which” derivative is
to be considered.

The following is an easy observation which follows from commutativity of the
partial derivatives of C*-functions.

Lemma 4.33. Let u € WEP(Q) and I, and Iy be two multi-indices such that the
composed multi-index I = I, U Iy = (i1,...,i},4%,...i2,) satisfies |I| < k. Then g;
is a weak m-th order derivative of gr, and a weak l-th order derivative of gr,.

The following theorem can be proved almost exactly as Theorem 4.24.

Theorem 4.34. Let u € LP(Q) then the following are equivalent:
o u € WHEP(Q), i.e. there is a sequence u, € C*(Q) N WHFP(Q) with u, — u
in WhP(Q).
e For each multi-index I with |I| < k there is a weak derivative g; € LP(Q)
of u.
o uc WHP(Q) and g; € WFLP(Q) for eachi € {1,...,n}.
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Note that if u € C¥(Q) then dru € k- |”( Q) whenever |I| < k. Thus if u €
WEP(Q) then for each |I] < k it holds d;u € VVO m’p(Q)‘ Furthermore, WP (Q) C
W,y (Q) Thus we can apply Theorem 4.17 to each d;u € W*~1/(2) and obtain the
following

Theorem 4.35 (Higher order Gagliardo—Nirenberg). Ifp € [1,n) and u € Wg’p(ﬂ)
then u € W=7 (Q) and

[ullwi-rpe < Cplluflwns

where

Corollary 4.36. Letl € {0,...,k—1}. Ifpec[l,:%) and u € WEP(Q) then for
it holds u € W, (Q) with
ullwea < Cp,e—pllullwes

where
np

Ty

Remark. For p =2 and %52 < (k —1) < % it holds
2n

n—(k—1)2

4.7. Poincaré inequality, and embeddings of Sobolev and Morrey.

> n.

Proposition 4.37. Let Q be a convex, bounded and open subset of R™. Then for
each p € [1,00) there for all u € W1P(Q) it holds

][ |u — ug|Pdr < 2™(diam Q)p][ Z \6‘iu\pd:c%
Q Qi

uqg = ][ udzx.
Q

Proof. Set g, = (31, |0;ulP)7 and ¢ = diam . Since C'-functions are dense in
WLP(Q) it suffices to assume u € CH(Q)NWHP(Q). By Jensen’s inequality we have

P
/\u—uQ|pdx— u(x) — ][udy dx
/][|u ) — u(y)|” dydz.

Let given z,y € Q define v,,(t) = (1 —t)x + ty and note by convexity of Q we have
Yoy (t) € Q. Thus

where

ju() — u(y)| = 1z — gl ] / (1~ t>x+ty>dt\

1
<t / 9u ey (1))
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Again using Jensen’s inequality we get

[ ualde < [ jue) - )l
co ([ ona) o
<o [ f / 9u iy (0) Pl dyd
il 1) Py

where we use the symmetry 7., () = vy (1 —t).
Using change of coordinates we also have

1 1
| aGaora =g [ awra< g [ awr
Q Qo

where
Qo = {10y () [y € ) C Q.

1
/ tndt < 2nt
%
so that

24P 1
/ |u — ug|Pdr < é / / — | gu(y)Pdydtdz
|€2] Lt Jg

2mep
< — w(Y)Pdydx = 2™ (P w(Y)Pdy.
g [ L aewrdvis =20 [ gy

Dividing each side by || gives the result. |

We estimate

Observe that the Holder inequality implies

(7{2 Zj; |5iu|dm> < <]iz: |3¢u|f’dm>;

which yields the following corollary.
Corollary 4.38. For all p € [1,00) it holds

1
][ |u — ug|dr < 2" diam Q <][ Z |6iu|1’dx>
@ =1

Lemma 4.39. If Q) is convez then there are constants cq and Cq such that for all
x €8 and r > 0 it holds

co 1" <|B(x)NQ < Cq-r".
Proposition 4.40 (Morrey’s Embedding). Assume Q is bounded and convex. If
ue CHQ) NWLP(Q) forp € (n,00) then u € C™' 7% (Q) such that

n

Ju(z) - u(y)| < Cl| Dull,d(z, )"~ 5
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Proof. Let x,y € Q2 and for i € N5 define balls
Bi = By-t-1)4(zy)(x) N1 Q
B_i = By—i-1)4(z,)(y) N Q
and
By = Ba(ey) (z) N Q.
Then each ball B;, i € Z is convex and for ¢ > 0 it holds
diam B; = 27"d(z, y)
and
|B;| > cq - 270"V d(x,y)" > cq - 27"d(x, y)".

1
Let g, = (31—, |0;uP)?. Then
jun, — s | =1 f wdo—f ud
B; Bit1

< ][ lu — (][ udy)|dx
B1+1 B

i

< ][ |u —][ udy|dx
i+1 i

~JB B;
§][ |lu — up,|dx
B;

1
1 P
< 2™(diam B;)—— (/ gﬁdw)
5 \Js,

7

< e 27 D d(z,y) T E

gqu

_1
for ¢, p = 2" - ¢ ®. Similarly,

D d(,y) ' | gull

lup_, — uB7(1,+1)| <cpn -2
and
[upsy —uso| <4+ cap - d@,y)' 77 | gullp-
Since u is continuous we have
up, — u(x)
and
upg_, — u(y).
Thus we get the telescope sum
\u(x) - u(y)‘ < Z |uBi - uBi+1|

1EL
<8 Cpn- [Z 2‘“1‘?”] Ngullp - dz,y)' =%
1=0

= Cpun - llgully - dlz,)' "%

where

Cpn =8 Cpn - lz 2“12)] < 0.

Since ||gu|lp = ||Dull, we conclude. O
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Note that for any €2 there is a ball B of radius %diamQ containing 2. Since

trivially any function u € Wé}’p(ﬂ) is also the W1 P-limit of function C*(Q2) ¢ C*(B)
we have u € WFP(B).

Corollary 4.41. If u € WJP(Q) with p > n then u € 0571,17%(9) with

Jull sz < Cpllullwns:
In combination with the Gagliardo—Nirgenberg we also obtain the following.

Corollary 4.42. Ifu € WJP(Q) and kp > n then u € C*¥~7 where

-[5)-

Y= - Z
any number in (0,1)

and

¢N
eN.

DI

Remark. Observe that for 252 < (k — (I + 1)) any Sobolev function u € Wg’p(ﬂ)

is in C'(Q2) with bounded C'-norm.

For completeness we also give a Sobolev inequality for general functions u €
WP(Q). We only sketch its proof as it suffices to have bounds for functions
u e WyP(Q).

Proposition 4.43 (Sobolev Embedding). Assume € is bounded and convex. Then
there is a C = C(n,p) > 0 such that for all w € WP(Q) with p € [1,n) it holds

pe < Cl[Dullp.

llu — uq

Note that this is a variant of the Sobolev inequality of Gagliardo—Nirenberg.
Indeed, if u € W, () for some bounded 2 then there is a (convex) ball B,(x)
containing ) so that u € WP (B,(z0)).

The proof of this inequality relies on the following bound.

Lemma 4.44 (Bound for the Riesz Potential). For all p € [1,n) there is an C =
C(n,p) such that for all f € LP(R™) it holds

Vifllp < Cllflp

where )
_ Y
Vo f(x) _/Wdy
for a>0.

The lemma provides an easy proof of Gagliardo—Nirenberg’s Sobolev inequality:
For this note that for all u € C}(R") it holds
1 Z?:l(xi - yi)aiu(y)d

ulr) = ——
@ = o Jen gl

In particular,

|u()

<L (S, Dl )

T nwn [l —yl"=t
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Thus for f = (X7, |9;ul?(y))” it holds

p < Cllflly=C ( B> |aiu|”<y>dy>
i=1

We will show that a similar argument also proves the general Sobolev inequality.

1

P

ullp- < [Vif

Proof of the Sobolev embedding. Note that it suffices to show the inequality for u €
CLQ)NWLP(Q). Let £ = diam Q we claim

o f

| Jo [l —ylnt

Ju(z) - ugl < dy

where f = (31, \&u\p(y))% Then the claim follows as above.
To see the claim note that

lz—yll
u(z) —uly) = _/0 Opu(x + rwy 5 )dr

for wy, , = 2==%-. Thus
YT T Qly—z]

lz—yll
// Oru(x + rwy 5 )drdy
aJo
1 o0
< —/ / flx 4+ rwy z)drdy
12 Jyjz—y<a Jo

[e'S) d
< i/ / / f(@+ 1wy )" tdpdwdr
12l Jo  Jjwi=1Jo
_e /OO/ fz + rwy 5 )dwdr
n|Q Jo  Jjw=1 o

o /oo/ f(y)
n|Q| Jo  Jjwy=1 lz —yl"!

where we extended f to a function on R™ by setting f = 0 on R™\. ]

1
u(r) —ue| = —;
u(x) — ol =

4.8. Lax—Milgram Theorem.

Proposition 4.45 (Riesz respresentation). Let (H,(-,-). Then for every bounded

linear map o : H — R there is a unique u € H such that for all v € H it holds
a(v) = (u,v).

Proof. See Exercise Sheet 8. (]

Definition 4.46. A bi-linear map B : X x X — Ris called bounded if for some C
and all u,v € X it holds
|B(u,v)] < C - lull - ||v]|
it is called coercive if for some ¢ > 0 and all u € X it holds
B(u,u) > Cllul]®.
Definition 4.47. Let X be a vector space. A symmetric bi-linear map () :
X x X — R such that (u,u) > 0 is called a scalar product on X. For u € X define

lul| = (u,u)z. If (X, ] - ||) is a Banach space then (X, (-,-)) will be called a Hilbert
space and || - || its induced norm.



LECTURE NOTES »LINEAR PARTIAL DIFFERENTIAL EQUATIONS* 45

Lemma 4.48. If (X, | - ||) admits a bounded, coercive bi-linear map B : X x X —
Rthen

1
<ua U>B = 5 (B(u7 U) + B(Uv u))
makes X into a Hilbert space such that || - || and the norm || - || induced by this
scalar product are uniformly equivalent.

Theorem 4.49 (Lax-Milgram). For all bounded bi-linear, coercive map B : X X
X — R and all bounded linear maps o : X — R there is a unique u € X such that

B(u,v) = a(v)
forallv e X.
Proof. Since B is bounded and coercive there is a scalar product (-,-) making X
into a Hilbert space such that the norms || - |5 and || - || are uniformly equivalent.
In particular, B is still bounded and coercive with respect to || - || 5.

By the Riesz Representation Theorem, there is a linear map T : X — X such
that
B(u,v) = (Tu,v)p.
Note that by the assumptions on B it holds
c(lullp)? < B(u,u)

= (Tu,u)p

< lullz - 1 Tulls
and

I Tullf < B(u, Tu) < Cllup - | Tull5.

which implies that 7" is bounded and injective and T'(X) is closed. We claim T is
also onto. Indeed, if this was false then there is a 2’ € T(X)1\{0} such that

(2, T(u))p =0
for all u € X. However, by coercivity, we would have
(", T(")s = c(|']lB)* > 0

which is contradiction.

Let g be the representative of a. Then there is a unique u = T~!(g) such that

B(u,v) = {g,v)p = a(v).
O
As an application:

Corollary 4.50. Given a uniformly elliptic operator L on a bounded domain 2
in divergence form. If b* and c are bounded by a constant only depending on
and the lower ellipticity constant X of L then for all f € L*() there is a unique
w e Wy (Q) such that for all v e W () if holds

/f Z a¥ ~6iu'8jv+2bk~6ku~v+c~u~vdx:/fvdx.
ij=1 k=1
In particular, if u € W2%2(Q) then

Z 0 (aij -Bl-u) —|—§:b’~C cOpu+ cu = f.

ij=1 k=1
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4.9. (to be written) Trace and Extension operators.
4.10. (partially covered in exercise) A weak topology via convex sets.

Definition 4.51 (co-convex topology). Given a Banach space first a base for the
topology by

0o ={U € 2% |3k € N,C},...C} closed and convex such that U = X\ UF_, C;}.
Then the following defines a topology

Teo = {U € 2% | 3U; EUCO,iEI:U:UUi}.
iel
Remark. This can be shorten to saying that 7., is the topology generated by the
subbase of sets which are complements of closed and conver subsets. Hence the
name co-convex topology.

From the definition we see that each set in 0., (hence also each set in 7,) is
open with respect to the norm topology. Hence the co-convex topology is weaker
than the norm topology which is usually called the strong convergence. Whereas we
write v, — v for the norm convergence we use v,, — v for the co-convex topologyg.
In particular, if v, = v in X then v, — v.

Definition 4.52 (Convex hull). Let A C X be any subset. Then the closed convex
hull of A is defined as

convA :=cl{v € X |IA\" € [0,1],v € A: Z)\Z‘ =1l,v= %@WZAfUZL .
neN
Note that we may equally define by requiring that the convex combinations on the
right hand side are finite, i.e. for each m there is an N,, € N such that A}’ =0
whenever n > N,,.

As a direct corollary of the definition of 7., we obtain the following theorem.

Theorem 4.53 (Mazur’'s Lemma). If (v,)nen converges to v with respect to Te,
then
v E ﬂ conv{vp, }r>m.
meN
In particular, there is sequences (A0')nen in [0,1] and Ny, > m in N with N, — oo
such that A, =0 forn & [m, Np], >, cn A =1 and

neN 'n
o)

v= lim E A,
m—o00 non
n=1

Proof. The subsequence (vy,)n>m also converges to v in 7., . Furthermore, the sets
Ch, = conv{vp, }n>m are closed and convex. Since by definition C,, is closed in 7,
its Teo-limit v must be in C,, as well. Thus by definition of conv{vy, }n>m, there are
A" € [0,1] and a Ny, € N such that A" =0 for n ¢ [m, Ny,,] and

1
o= 7 Apoal < -

n>m

Ibelow it will be shown that the co-convex topology is the weak topology.
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Lemma 4.54. If f : X — R is a convex lower-semicontinuous function then f is
lower semi-continuous with respect to the co-convex topology.

Proof. The proof is shown for sequences but by change of notation also works for
general nets.

Let choose any sequence (vp)nen With v, — v. Then there is a subsequence
(Un, Jken such that

C = lim f(vy,) = liminf f(v,).
k—o0 n—oo

Because f is convex and lower semi-continuous the sets {f < r}, r € R, are closed
and convex. Thus it suffices to show that v € {f < C + €} for all € > 0.

Now for every € > 0 there is an K € N such that for all £ > K it holds
f(vn,) < C+ € implying that v,, € {f < C + €}. However, the set {f < C + ¢} is
closed and convex which imply that the limit v of (v, )kenisinv € {f < C+e}. O

Let X ™ be the set of bounded linear functions, i.e. «: X — R is linear and there
is a C such that
la(v)] < Cv]|.
On can show that
laf|* = sup |a(v)]
llvll=1
is a norm on X* making it into a Banach space.

Lemma 4.55. A linear function o : X — R is continuous if and only if it is
bounded.

Proof. Assume first « € X*. Let v, — v then |lv, —v|| = 0. Thus by linearity and
boundedness of « it holds

. B o e _ul=o.
Jim_Ja(v) = a(v,)| = lim_|a(v —o,)] < C lim o, — ]| =0

Assume « is unbounded. We will show that « is not continuous at the origin
0 € X. Indeed, unboundedness implies there is a sequence v,, with ||v,| = 1 such
that 0 < a,, := a(v,) — co. Observe w,, := aivn — 0 so that

nh_}rrgo a(wy) =1# a(0) =0.
O

Definition 4.56 (Weak topology). The weak topology 7, on X is the weak-
est/smallest topology on X such that each bounded linear function is continuous.

Corollary 4.57. Any bounded linear function is continuous with respect to the co-
convex topology. In particular, the co-convex topology is stronger'® than the weak
topology, i.e. if (Vn)nen converges with respect to 7., then it also converges with
respect 1o Ty,.

Using the Hahn—Banach Separation Theorem we can also show the following.
As we don’t need the result in the general setting, we only sketch its proof. The
Hahn-Banach Theorem also implies that the 7, (and thus 7., ) are Hausdorff topolo-
gies, i.e. a sequence/net can converge to at most one point. We only state the
version needed here.

OMore precisely, “not weaker” as the two topologies are equivalent/the same.
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Theorem (Hahn-Banach Separation Theorem). For any Banach space (X, || - ||)
and every v € X\{0} and every convex closed set C with v ¢ C there is a linear
function o with o(v) ¢ [inf,cc a(w),sup,cc a(w)].

Proof. Without proof. See any textbook on functional analysis. O

Corollary. For any Banach space it holds Teo = Ty, 1.€. V; — V 0 T4 if and only
if vi = v in Ty, for any net (v;)er.

Proof. By the corollary above it suffices to show that v; — v in 7, implies that
v; — v in T.,. If C' is a convex set then the Hahn-Banach Separation Theorem
implies that there is an a such that

a(v) ¢ [inf a(w), sup a(w)].
welC wel
In particular, by 7,,-continuity of « there is an ig € I such that

a(vs) ¢ [ nf (), sup afuw)]

Thus v; € X\C for i > ig. Now let U € o, with v € U. Then there are closed
convex sets C, and ay, for K =1,...,n such that

U= X\ UZ:l Ch
and by continuity of oy, there is an iy € I such that

ap(v;) ¢ [ inf ap(w), sup ag(w)] for all i > .
weCy weCy
But then v; ¢ Cy, for all i > ig and k = 1,...,n showing that v; € U for i > 1.
Finally, let V € 7., be an arbitrary neighborhood of v then there is a U € o,
such that U C V. As above there is an ig € I such that v; € U C V for all i > i.
As V was arbitrary we have shown that v; — v in 7,. O

Remark. The proof indicates that it suffices to look at the sets {X\C'| C' is closed and convex} C
Ty Which is a subbase for 7,,. A similar argument below will show that a set is com-

pact if and only if every cover formed by elements of this subbase admits a finite

subcover, this result — called the Alexander Subbase Theorem — holds more gener-

ally for topologies obtained from a subbase.

4.11. Difference quotients of Sobolev functions. Given i € {1,...,n}, a real
number h and a function u € LP(€2) we define the following

u(z + he;) — u(x)
- .

It is easy to see that Of'u € LP(Q) if u € LP(Q). In general, however, the LP-norm
of O%u is unbounded as can be seen from the following proposition.

oMu(z) =

Proposition 4.58. Assume u € LP(Q). Then u € WYP(Q) if and only if there is
a K > 0 such that for all ¥ CC Q,0< h <d(V,00) andi € {1,...,n} it holds

HaihuHLP(Q’) < K.

Remark. If u € W1P(2) then one can show that K = || Dul|, sastisfies the assump-
tion.
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Proof. We first show that
107 ullp < [105ul]-
Indeed, if u € C*(Q) then for fixed z € Q' and h < d(€',99) it holds

hei) — Lt
Hethe) 2@y X[ ot e
0

h
which yields

1 h
/ |0 u(z + he;)[Pda < / - / |0;u(x + te;)|Pdtdx
Q/ ’ 0
1

h
=— / |O;u(x + te;)|Pdadt
h 0 Q/

h
l/ /|8iu(x+tei)|pda:dt
hiJo Jo
:/ |Oiu(z + te;)|Pdxdt

Q

IA

Assume now that [|0/'u| sy < K for all € CcC Q. Fix Q' and observe that

the bound implies that 9/ u — g; weakly in LP(Y') for a sequence h,, — 0.
Let o € CHQ) and h,, < d(Q,09) for all large n. Then

/aihnuwpda::—/u'ai_h“gadm.
Q

By the weak convergence we see that the left hand side converges to

/ g; - pdx.
Q/

Since ¢ has compact support and is differentiable we have 9, h"(p — 0; uniformly

implying that
/ gi'@dib“:—/ u- O
Q/ ’

which shows that g; is a weak derivative of u restricted to '. Furtermore, g; is
bounded by K. Since weak derivatives are unique on 21 N Qs for two domains
Q1,0 CC Q we see that g; can be defined on all of Q2 with bound only depending
on K. In particular, u has weak derivatives g; € LP(Q)), i = 1,..., n, implying that
u € WhP(Q). O

4.12. (not covered) Maximal Function Theorem. The following can be de-
rived using the fact that any open set is given by

U= U By(an)
neN,qeQ,Bq(x,)CU.

where {z,, }nen is a fixed dense subset of R”™.

Lemma 4.59. Given any open cover {U;}icr of a subset E of R™ there is an at
most countable I' C I such that {U;}icp still covers E.

In the following given a ball B = B,.(x) for some 2 € R™ and r > 0 we denote
by kB the ball By, (z).
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Lemma 4.60 (5r-Covering Lemma). Assume I C N and {B;}ics is a collection of
balls with sup{rad B;} < co. Then there is a subset of indices J C I such that the
subcollection {B; }icy of balls is disjoint and

UBic 5B

iel ieJ
Exercise (Vitali Covering Lemma for finitely many balls). Show that if I is finite
then J C I can be chosen such that the balls {B;};c; are disjoint and |, .; B; C
Uicy 3B:.
Proof of the lemma. Let R = sup{rad B;} and we define

I,={iel|B;e (2 "YR 27",
We define inductively sequences J,, and K, as follows: Let Ky = Iy and Jy C
Ky such that {B;}icy, is disjoint and for any i € Ko\Jy there is a ¢/ € Jy with
B;N By =@, i.e. {B;}icy, is maximal disjoint subcollection of {B;}ick,. Assume
now K, and J,, are constructed. Define
Kn+1 :{’L'Eln+1|BiﬁBj =g forallj € J()UUJn}

As above choose Jy, 11 such that {B;}ics, .,
{Bi}icknii-

We claim that J = J,,cy Jn sastisfies the assumptions of the claim. Indeed, by
construction the collection {B;};en is disjoint. Furthermore, for i € I\J there is
an n € N such that i € [,,. By triangle inequality it suffices to show that there is
an j € J such that B, N B; # @.

Since ¢ € I, either B; N B; # @ for some j € JoU...UJ,_1 or ¢ € K,,. In the
latter case, the choice of J,, implies that the collection

{Bi} U{Bj}je,
is not disjoint, i.e. B; N B; = @ for some j € J,,. |

icl

is a maximal disjoint subcollection of

Definition 4.61 (Hardy-Littlewood maximal function). Given a measurable func-
tion u : R® — R and R € (0,00], the (Euclidean) maximal functions Mpf are
defined as

Mpgu(z) = sup ][ |u|dz.
r€(0,R) J B.(x)

Remark. If u : Q — R is measurble we may assume u = 0 outside of {2 . This allows
us to apply the maximal operator M also functions defined only on subdomains of
R™.
It is not difficult to see that for u,v : R™ — R measurable and A € R it holds
Mpg(u+v) < Mpu+ Mgv
and

MR()\’LL) = |)\|MRU.

Theorem 4.62 (Hardy-Littlewood). Let u : R™ — R be a measurable function.
Then the following statements hold:

(1) There is a Cy € (0,00) such that for all t > 0 it holds
C
N ({Mpu > ) < Tl/|u\dx.
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(2) For allp > 1 there is a Cp € (0,00) such that

||MUHP < CpHu”p'

Proof. Since the bounds are independent of R € (0, 00] and Moou = limg_,0o Mgu
it suffices to assume R € (0, 00).

(1): If u ¢ L*(R™) then there is nothing to prove. Assume u € L!(R").

By definition, for all z € {Mpgu > t} there is an r, € (0, R) such that

][ | > t.
B, (2)

Since { B, }zcr, is a cover of E; we first pick a countable subcover and then use
the 5r-Covering Lemma to obtain disjoint ball {B;};cs such that

E, c | 5B
el

Then

AN ({Mpu>t}) < N'(5B;)
<5" Y AY(B;)

el

5" 5"
< —Z/ |u|dz < —/|u\dx
t iel / Bi t

(2): Again if v ¢ LP(R™) then there is nothing to prove. So assume u € LP(R").
Furthermore, since Mu = M|u| we may assume u > 0.
For ¢t > 0 note that

where (u — %) = max{u — 5,0}. Then

{(Mpu >t} C {Mp(u— %>+ > %}.
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Using Cavalleri’s Principle, the bound obtained for p = 1 appied to (u — %)we

2
obtain

/|MRu|pdu = p/ tPIN (M > t))dt
0

t

<p / TN (M- ) > D

o / PN M, (0= 1) 4 > £))dE
0 (oo}
< Clp2p/ tp_Q/ UX {u>tydadt
0 R
:Clp2p/ / tp_QuX{u>t}dtdx
n 0

u(z)
:Clp2p/ u(m)/ P2 dtdx
n 0

2P
= Cl p /'U/pdl'
p—1

1

so that the result holds for C, = (6’1 p2" ) v, O

p—1

5. L?-ESTMATES

In the following let L be a uniformly elliptic operator such that a bk c: Q=R
are Lipschitz continuous. Furthermore, let Lo with ay = a* and bf = co = 0. Note
that in this case if u € W12(Q) is a weak solution to Lu = « for a bounded linear

1,2 L .
map on W, 7(Q), i.e. it satisfies

BL(u,v):/ Z aij~8¢u'8iv+2bkoaku~v+c'u~vdx:a(v) Yo € W, %(Q)
k=1

1,j=1

then w is also a weak solution to Lou = «, where

a(v)—/Zbk-Bku-U—i—c-uwdw
k=1

a,, (V)

a0+ [ S0 w0+ 0 ) o vda
k=1
Note that

(V)] < Ja(0)] + (1B con + llell) - lullz - [[o]lws.2
k=1

which implies that o, is also a bounded linear map on VVO1 2(Q) with norm de-
pending only on |u||s and the bounds on b* and c. Note that a natural norm for
bounded linear maps o : W, %(Q) is given by

ol = sup lav(v)].
veWy ? (Q)\{0}

The argument show that it suffices to look at weak solutions Lou = a.
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Proposition 5.1 (Cacciopoly inequality). Let u € W12(Q) be Lou = o weakly,

i.e.
—/ Z a’ - Ou - Qvdr = a(v)

3,j=1
for all v € Wy (). Then for all ' CC Q it holds
lullwz@y < C(QQ, X A7) (lall + [lullz2()
where

o= sp AL
vewd 2 @\(oy IVllw2

Proof. Let n: Q — [0,1] be a smooth map with compact support in  such that
n=1on Q. Itis not difficult to see that the derivatives of 1 are bounded by a
constant C' only depending on the distance of ' and 9.

Now it is easy to see that v = nu is a function in W&’Q(Q) so that

Br, (u,v) = a(v).
From Gagliardo-Nirenberg we obtain
[vllwrz < C(Q,n) - D)2
< C(@,n) - (IIn*[Dulllz + Inllc ull2)
< C(Q, Q' n)ln| Dul 2.
In particular,

1
@) < lled] - floll < - lel? +6/772|DU\2dﬂf-

Since n =1 on Q' and Ly is uniformly elliptic we obtain

)\/ n* - |Dul?dx < / Z n*-a" - Ou - Ojudx
Q Q,

3,j=1
:/ Z a" '61’U'8j?]dl’—/ Z a' - Oy - 05m - 2n - udx
Q5=1 ij=1

a(w) + A / n-|Dul - |Dn| - Juldz
I lellwez + Allg - [Dulll2 - 12 1Dl - fulllz

IN

N

1
ZG(HO‘”2+A||77||01Hu||g)+6(1+A)/772'|Du|2dx'

Now choosing € small (only depending on A and A) such that €(1 + A) < 3 we
obtain

A 1
5 [ 1DuP < (el + Al ul).

Since € and ||n||cronly depend on the data and 7 =1 on ' we obtain

[ wda [ DuPde < @20 a0 (ol + ).
’ Ql
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Theorem 5.2 (L*-estimate). Assume u is a weak solution to Lou = f in Q. If a¥
are Lipschitz functions in Q then u € W22(Q) and for all ' CC Q it holds

loc
ullwa@y < O AR (lally s @y + L+ a7 o) - [ullz2(oy)-
In particular, if Lu = f and b* is also Lipschitz on Q) then
— Z 9;(a" dyu) + Z V" opu +cu= f almost everywhere in Q.
ij=1 k=1

Proof. Note that the last result follows by observing that u € w22 (©) and

loc

Br(u,p) = /fcpdx

for all p € C2°(Q) implies that we can apply partial integration to the quadratic
term in By, which yields

/ =Y 9@ 0u) + > WFopu+ cu | - pdr = /fsﬂd%
ig=1 k=1

Back to the equation Lou = «. Let Q' CC Q and choosing in the following
0 < h < d(S,09). Then for all v € W, *(Q') it holds v(z + hey,) € W, *(Q).
Note that for v € W, *(Q') it holds

/ > a0:(Ofu)d;vde = — / > dwd" (- 0jv) da

1,7=1 7,7=1
= 7/ Z a 9;ud; (0 "v)dx — / Z (0; "a")0u - Oju(- — heg)dx
i,j=1 i,j=1

= /f(a,;hv)dx - / Z (Ora)0pu(- + hey,) - Qjuda =: a"(v),

4,j=1

i.e. Lootu = —ah weakly.
Let now ©” such that Q' CcC Q" CC Q and 0 < h < d(§¥,09") then from the
Cacciopoli inequality we obtain

a" () < 171295 "ol 2y + la¥ loma e - lullwrzen - ollyegay
< (Ifll2 + lla® llcor ) - llullL2y) - [vlly2(q)-
Thus Cacciopoli gives
[Opullwrz@y < CQQ", QAN n) (Ifll2 + (1+ la[|corar)) - llullr2)) -

Finally, we may choose © such that the constant does not depend on Q anymore.
(I

Corollary 5.3 (Higher L2-regularity). Assume f € W*2(Q) and Lu = f weakly.
If a¥ b* € C*=11(Q) and c € C*~1(Q) then u € Wlij2’2(ﬂ) and for all Q' there is
a constant C' depending the data such that

[ullwr+z2ny < CUFllwrz@) + l[ullLz@))-
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Proof. We only give the idea for the W32-regularity: From the proof above we have

/ Z a' 9;(0pu)dvdr = —/3vadx — / Z (0pa)Oju(- + hey,) - Ojvdx

3,7=1 i,5=1
so that
/ Z a 0;(Opu)djvdr = — /agfvda; —/ Z (Ora" Ou) - O;vdx
ij=1 ij=1
=— /(8kf - Z 9;(Ora" ) - vdx = /fl -vdx.
i,j=1

If v € Wy () for Q' CC Q then

n
1Flz < D Nl llons llullwsa.

ij=1

This shows that dyu € I/VZQQC2 (©). Using nested domains we can therefore bound the
W32norm of v on Q' C Q by the Ct!-norm of . and the L2-norms of f and u
as well. ]

Corollary 5.4 (Inner C*°-regularity). Assume f € C* and Lu = f weakly. If
a,b¥ c € C®(Q) then u € C(NQ).

Proof. Just observe that u € WZIZ’CQ(Q) for all £ € N. Thus using a smooth cut-off
function 1 which is constant equal to one on ' CC Q we see nu € W*(Q) for
all k € N so that via Sobolev and Morrey embedding we obtain nu € C'(Q) for all
I € N. Since u = nu on €, we see that u is differentiable of all orders in €’ (more
precisely u agrees with an infinitely differentiable function on Q). O

Lemma 5.5 (boundary Cacciopoli inequality). Let Q = B3(0)" = {x € B(0) |z, >
0} and Lo be as above and Then for any bounded linear map o : W) (Ba(0)*) — R

and ¢ € WH2(By(0)1). Then there is a constant C = C(\, A,n) such that for any

weak solution Lou = a with u — o € Wy*(By(0)") it holds

[ullwrz(s,0)+) < Cllledl + [lellwr2s0)+) + lullL2(s,0)+))-
Proof. Note that because

lullwi2(,0)+) < llu—@llwi2s, 0+ + llelwiz(s,0))
and
Br(u—¢,v) = a(v) = Br(p,v) =: a,(v)
where [|all, < |lofl + [[@llwr.2(B,(0)+), it suffices to show the estimate for ¢ = 0.
In this case observe that for a smooth cut-off function n : B2(0) — [0, 1] with
n =1 on By(0) the function v := n?u is in W, *(B2(0)"). Thus the same argument
as in proof of the Cacciopoli inequality applies. O

Theorem 5.6 (Global regularity). Assume Q is a bounded open domain with
C* Ul boundary. If L is uniformly elliptic and a*,b* € VYIHLOO(Q) and ¢ €
Wk=Le(Q) then for any f € W*2(Q) and ¢ € WEF22(Q) there is an u €
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Wk+2.2(Q) solving the PDE Lu = f (weakly) in Q and having trace Tu € Wk2(9Q)
equal to T'w. Furthermore, it holds

[ullwrszo < COQN A D) ([ fllws2 + [l@llwssaz + [lullL2).

Sketch of the Proof. 1f @ = By(0) the proof follows exactly as the interior regularity
proof by using the boundary Cacciopoli inequality. For the general case note that
locally near every zq € 02 we can use C'*!-diffeomorphism W : Ujo — Bs(0)™ such
that @ = uo ¥ solves a uniformly elliptic PDE. More precisely, there is a uniformly
elliptic operator L with
@ =" (a"0,9'9;U*) o W - [det(DYY)]
i,j=1
_ n
B =3 (00 T7) 0 U - [det(DTY)|
k=1
and
¢=coW . |det(D¥ 1)
f=foU . |det(DUY)

and it holds Li = f weakly.

Since ¥ € C*! and ', bF € C%1 it holds a*,o» € C%! with norms depending
only on U. Similarly, the uniform ellipticity constants of L only depend on ¥ and
the constants of L.

Now for Kk =1,...,n — 1 we can apply the argument of the inner regularity to
conclude that 9t € W12(B;(0)) with corresponding bounds depending on the
L2-bounds of @ and f .

For k = n observe that

n

Oppii= (@) (= Y @M - Y (ka*)au+ | in By(0)T.
(k,1)#(n,n) k,l=1
Since (a"")~! is bounded by a constant depending only on L and ¥, we see that

the Cacciopoli inequality gives
10nnill 28y 0)+) < CO¥,X A (| Fll2(aoy+) + (L + @™ | con)l|w]l 22 (5, 0)+))

which gives the desired W?22-bound of @ on B;(0)*.

Using the uniformy bounds on the derivatives of ¥ we then obtain W?22-bounds
for u on Uy, .

Since  is compact we may find finitely many U; so that the W22-norm is
bounded which gives the desired global W?22-bound. ([l

6. PROPERTIES OF WEAK (SUB)SOLUTION

Definition 6.1. Let L be a uniformly elliptic operator on a bounded domain €2
with b* = ¢ = 0 then v € W12(Q) is called a weak subsolution of the equation
Lu = f (short Lu > f weakly) if for all v € W, *(Q) it holds

Br.(u,v) ::/ Z a’ - dpu - Ojudx < —/f-vd;v.

,j=1
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Note that if v € W12(Q) then also u™ = max{u,0}, v~ = max{—u,0} and
lu| = ut +u~ are in WH2(Q). Now if  has a Lipschitz boundary then the trace
T : Wh2(Q) — L*(Q) is well-defined and u € W, *(Q) if and only if Tu = 0. Thus
by linearity we have

Tu=T(u")—T(u")
and Tu® > 0 which implies
esssupyg Tu = ||T(uh)| 1 (a0) = inf{M € R|(u— M)" € W, 2(Q)}.
Note finally that the right hand expression makes sense in general.

Proposition 6.2 (Weak maximum principle). If Lu > 0 weakly for v € C°(Q) N
Wh2(Q) and (u— M)t € Wy*(Q) then u < M in Q.

Proof. The assumptions imply v = (u — M)T can be used as test function. Thus
n n
/ Z a’ - dyu - judx :/ Z a’ - dpu - jvdr < 0.
{u>M} ij=1 =1
Since L is uniformly elliptic we see that 9;u = 0 on {u > M}. This, however implies
that u is locally constant in the open set {u > M}. If {u > M} were non-empty
this would give a contradiction as ) is connected. (Il

Remark. The statement also holds for v € W2(Q) with u < M a.e. in €. For this
observe if 9;v = 9;u almost everywhere on {v = u} whenever u,v € WH2(Q).

Theorem 6.3 (Strong Maximum Principle). If Lu > 0 weakly for u € C°(2) N
Wh2(Q) and (u— M)t € W32(Q) then either u= M oru < M in Q.

Proof. Assume C = {x € Q|u(x) = M} is non-empty and not equal to Q. Then
there is a xg € Q and y € C' such that

d(‘r()v y) = yl/réfc d(ma y/)

Furthermore, let 21 = 2% then B, (z) C {u < M} and 9B, (z) N C = {y}.
As in Lemma 3.7, choose a > 1 such that

Lv(z) >0

for v(z) = e—ollz=yll* _ g—ar? B
Choose s < 1 such that Q' := B,(y) C © and observe that v < 0 on 0\ B,.(z1)

and u < M = u(y) on 9 N B,(x1). Now choose € > 0 such that

M — infaﬂ/mgr(ml) u

e <

sup v
then
Ue = =u+ev|,o, < M =u(y) + ev(y).
In particular, there is an M < M such that (u. — M) € Wy ?(€). However, the
weak maximum principle implies
Ue < M
which contradicts the fact that y € Q' and the u.(y) = M > M. O

We also obtain the following result. The proof is similar to the one below using
the weak maximum principle.
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Corollary 6.4 (A priori bounds). Let L be a uniformly elliptic operator with b* =
k

¢ =0 on a bounded domain Q) such that B := suplb—)\‘ < oo and M > 0. Then for

allu € W2(Q) N C%Q) with Lu > f weakly and (u — M)t € Wy*(Q) it holds

Supu§M+gsup|f*|
Q A @

wheTﬁ C = e(ﬁ+1) diam Q __ 1.

Proposition 6.5 (Limits of subsolutions). Assume (uy,)nen is a sequence in W12 (Q)
converging weakly to u € WH2(Q). If Lu,, > f weakly then Lu > f weakly.

Proof. Note that u,, — wu weakly implies that for all bounded linear functionals
a: Wh2(Q) — R it holds

n11_>rr010 a(uy) = a(u).

Observe that uniform ellipticity of L implies
u+— Br(u,v)

is a bounded linear functional for every fixed v € WO1 2(Q) In parrticular, we have

Br(u,v) = lim Bp(up,v) > lim —/f-vdx: —/f-vdx

n—oo n—oo

proving that Lu > f weakly. O

7. SCHAUDER ESIMATES

The Sobolev regularity theory shows that provided the coefficients behave nicely
and f is sufficiently many times weakly differentiable (and thus Hélder continuous)
then Lu = f implies u is a classical solution with Holder continuous second deriva-
tives. Via so-called LP-estimates it is possible to obtain W2P-bounds which would
yield C1“-solutions provided f is a bounded function.

More classical it is possible to directly obtain C?*-bounds if f is a C“-function.
Those estimates are called Schauder estimates. In order to simplify the notation we
define the following semi-norm for « € (0,1] and u : @ — R (we omit the domain if
it is clear from the context)

() ()
[U]Q)Q B w;ﬁygﬂ d(.’[, y)a

and

lellkan = D l0rullo + D [Orulsq

1<k =
Note that it is easy to see that [u], o = 0 implies u = const.
If u € C**(Q2) then we use the short hand notation
[D*ulao =Y [Orul o

| Il=k

Lemma 7.1 (Ehrling’s Lemma). Assume X,Y, Z are three Banach spaces and there
are two bounded linear maps K : X =Y and I :' Y — Z such that K is compact
and I is injective. Then for all € > 0 there is a C' = C(e) > 0 such that

[Kzlly <ellz]x +C-[[I(Kz)| 2.
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Proof. If the claim was wrong then fixed € > 0 there is a sequence (2, )men in X
such that

ellemllx +m - [I(Kzm)llz < [|[Kzm|ly =1.

Since K compact there is a subsequence such that Kz,,, — y. Note that 1 =
limy, s o0 | KZm, || = ||y|| which implies y # 0. By continuity it holds

1
ITyll < Jim [T(Kan)] < Jim — =0,
m—o0 m—oo M,
Then injectivity of I shows y = 0 which is a contradiction. O
By Arzela—Ascoli we obtain the following.
Corollary 7.2. For all bounded open sets Q2 and all € > 0 there is a constant
C = C(e) > 0 such
ulle2 < ellullcz.a + C(e)||ullco
and

[ullez < ellullcze + Cle)[ull 2

Lemma 7.3. Assume u is a functions satisfying the following: for all € > 0 is an
R, > 0 such that

u(z)] < €|l
whenever x ¢ Bgr, (0) (in short |u(z)| = o(||z]) as ||z|| — oc). If u is harmonic
then u is constant.

Proof. Let x,y € R™ then
|Br(z)ABRr(y)| = |Br(z)\Br(y) U Br(y)\Br(z)|
< d(x,y)|0Bg(0) = Cpd(x,y)R" .

Let € > 0 and R > (Re + ||z|| + |lyll). Then Bgr(z)ABgr(y) C R™"\Bg, and the
mean-value property shows

1
lu(z) —u(z')| < ot lu(z)|dz
|Br(0)| J Br(2)ABR(y)

< 2C,d(z,y)e.
As € is arbitrary we see that u(x) = u(y) which implies the claim. O

Corollary 7.4. Assume u is harmonic on R" and [D*u], < oo for k € N and
a € (0,1). Then u is a polynomial of order at most k, i.e. D*u = const.

Proof. Since Jdru is harmonic if u is harmonic, it suffices to show that a harmonic
function with [u], < C' < oo is constant. Now the bound implies

u(2)] < lu(z) = u(0)] + |u(0)]
<O+ l=[1%)

which shows that u satisfies the conditions of the previous lemma. In particular, u
must be constant. O

Proposition 7.5. For all u € C*%(R") then it holds
[D2U]a7g S C(n, Oz)[Au]%Q.
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Proof. If the claim was wrong then there is a sequence (t,)men in C’l2 Y (R™) such
that
M[AUL] 0.0 < [D*Um]a.0 < 0.
Via rescaling and shifting we can assume [Dgum]a,g =1 and
sup sup |alum (y) — 01ty (0)|
|[|=2 yeRn [yl

1
> —.
-2

Furthermore, extracting a subsequence (um,, )iey we find a multi-index I with |I] =
2, a direction e; and sequence (h;);ecn such that

|01um, (i - €;) — Orum, (0)] 1
he > ) > 0.
Set
i (z) = hy ™ “upm, (hy - @)
then still
m[Aﬁl]a’Q < [Dgﬂm]a’g < 00
and

[D*upm]a0 = 1.

Furthermore, |0;1;(e;) — 07 (0)| > 5. In addition, we can find a quadratic

polynomial v; = (z,b+ Az) + ¢ such tﬁgi-
@(0) =0
Du;(0) =0
D?*4,(0) =0
and choosing v; appropriately we also have
i(e;) # (0)
where @; = 4; — v;. Note that [D?d], = [D?*W]s = 1 so that we can extract

a subsequence (i, )ren converging locally uniformly in C?(R") to a function u
satisfying

Awu = const
[D%u], <1
Oru(e;) # 0ru(0)
Du(0) =0
D?u(0) = 0.

Thus u is harmonic and previous result D?u = const. However, this means that u
would be constant, contradicting the fact that dru(e;) # 0ru(0). O

Corollary 7.6. If A is a symmetric positive matriz with A\I,, < A < AIL, then
[D?u]y < C(n, o, A\, A)[Lau]q.
where L4 is the elliptic operator in non-divergence form obtained from A.

Proposition 7.7. Let L be an uniformly elliptic opertor in non-divergence form
such that a¥ € C%(By(0)) then for all u € C*>%(By(0)) it holds

| D*u|c2.0 (B, (0)) < Cny o, A A, [a]0) ([ Lull co.o s,y (0)) + [ullcz(Bac0))-
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Proof. Let 1 be a smooth cut-off function for By(0) C Bs(0) and define a new

cut-off function by
Tr — X
Nao,p =1 P .

v =11y, € O (Bay(w0))
for zy € B1(0) and Bs,(z¢) C B2(0). Furthermore, v = u on B,(zo).

Let Lo be the elliptic operator obtained via Ag = (a*(x9))},=;. Let

Then

Lov=Lv— Z(aij — a"(20))0;5v.
Thus
[Lotla < [Lela + |D%ellcn - [0 — a9 (o)) + 16 — ¥ (20) 008, (o - [P0l
< [Lola + [a7)a - 0]z + 20" - [a¥] - [D?0]ca.
Also observe that
[D?v]q < Ci(n,a, N\, A)[Lov]a.
Thus choosing p small (depending only on gives (n,a, A, A, [a¥],)) gives
[D%J}a < Cl(n7 a, A A, [aij]a)([LU]Oé + ”UHC?)'
Now observe
”UHC'2 < C(n) : HUHC’2 . ||77wo7p|| < 02(n7a’)‘7A7 [aij}a)HUHC’z(Bz(O)
and
Lv=Lu-ng,p+u-Lng,+2 Z aijaiuajnmo’p
which implies
[Lola < C3(n,a, X A, [a¥]0) (| Lullgoa (s, (0 + [ullore (s, (o))
< Cs(n, o, A A [a¥]o) ([ Lull oo s,y(0)) + [[ulle2(B2(0)))
Finally

[DZU](LBI(()) < sup [D2U]Q,Bl(0)
zo€B1(0)

< Cy(n, a, A A, [a7]0) (| Luf| ooy 00)) + lulle2(Ba0))-
To conclude note
[ull 2. (B, (0)) = [D*Ua, B, 0) + ullc2(Bs(0))
< (T + Ca(n, o A AL [a]0)) ([ Lul| oo By (0)) + [[ullo2(B2(0)))-
O

Remark. Note that the cut-off function only depends on the distance d(B1(0),9B2(0))
so that we can prove a similar estimate for

ull o2y < Cn,a, A A, (@], d(SY,09)) - (ILull o) + llullcz@)) -
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Theorem 7.8. For any uniformly elliptic operator with b* = ¢ = 0 there is a
constant C = C(n, a, A\, A, [a¥],) > 0 such that for all u € C%(L2) it holds

sug min{d(z, 8Q), 1}*|D*u(z)| < C (|| Lul|co.e () + |ullcow))
kS

and

sup min{d(z, 90, 115 *2|D%u(a)| < C (| Lullonney + lul2@)-
(A4S

In particular, for all QY CC Q there is a constant C = C(n, a, \, A, [a¥]q, d(€Y,00))
such that
(I Lullgo.a ) + llullcoa))

lullez.e (@ < C-
() (ILullco.aqay + llullz2(o)) -

Proof. The L*-estimate only depends on an application of Ehrlings Lemma, for the
inclusion C?® — C? — L? and the scaling property of the L?-norm, more precisely
if @(z) = w(zo+ px) with Ba,(z0) C Q we get [|afl L1 (s, 0)) = £2 |l L1 (B, (z0))- The
factor p% is carried along and induces the addition d(z,d9)%-factor in estimate
containing the L2-norm of u. We leave the details to the reader and only focus on
the C%-estimate.

For this define

S = sup min{d(z, 9Q), 1}?|D?u(x)|.
€N

Pick g € Q and set p = min{$d(zo,99), 5} < 1. Then Ba,(z¢) C € and for all
T € Bs,(xo) it holds min{d(z,d9),1} > p. Define a function @ € C*(Bz(0)) by
t(x) = u(xo + px) and observe
]l coBa(0y) < llullcow)
I1D?@l| o5, (0)) = £ Dullcos, (w0))
and
1Ll (Bac0)) = PPl Lullco (B, () + P (Lt 0, oy (20
< [ Lullew ()

where L is the rescaled elliptic operator which is still uniformly elliptic with the
same constants as L and [a"/], < [a%], thus the previous C?°- estimate holds for

C= C(”v «, )‘7 A’ [a”}a)
Then

min{d(zo, 8Q), 1}*| D*u(zo)| = 9p°| D*u(z)|
< 9| D%l co(, (o))
< 9C(| Lit|| co.o (B (0y) + liillc2(Bs(0)))
< 9C(||Lullco.e () + €0° [ D*ul|co (B, (20)) + Cniae

where we use Ehrlings Lemma to estimate

U”cD(Q))

Il c2(B,(0) < €lD?llcoB,(0)) + Cruave il co(50))-
Note that

P*|D*ullco(p,,0) < sup  min{d(z,09),1}*|D*u(z)|
€ B2, (wo)

<8S.
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5 _ _1
Thus choosing € = g~ then

. 1 y
min{d(zo, ), 1}*|D*u(z)| < 55 + Ca(n, a, A, A, [a"]o) (|| Lul| co.a @y + [Jullco(ay)
which implies the claim
S <20 (n, a, A, A, [aY]a) (| Lullco.o o) + [[ullcoge))-
O

Remark (Boundary/Global Regularity). Global regularity is obtained by doing the
same analysis on R"" == {z € R"|z,, > 0} and B; (0) = By(0) N R™*. If the
boundary of Q is sufficiently smooth then we may cover 2 by charts and obtain
estimates for a finite cover of {2 which yields the global regularity

[ull 200y < Cn, o, A A, [0 ], Q) (|| Lullco.e () + [[ullco))

for u € Cg ().
If u = ¢ on 99 for some ¢ € C?*%(Q) then we also get

[ullc2.a 0y < Cn, o, A A, [a7]a, Q) (| Lul| oo ) + [[ullco) + lellczaq))-

8. METHOD OF CONTINUITY

Lemma 8.1 (A priori bounds). Let L be an elliptic operator with ¢ < 0 on a

bounded domain Q such that B := sup |b | < 00, Then for all u € C2(Q2) N CO(Q)
with Lu > f it holds

C
supu < supu’ 4+ — sup IF |
Q a0 A Q
where C = e(B+1)diamQ _ 1

Proof. Set Lo = > a"9;; + S ¥y then for a > B+ 1 and d = inf,eq 7 it holds
Loe®@1=d) = (a?att + abl)ea(ml_d) > (o — B)ea(ml_d) >\ in Q.

Set
v = supu* 4 (eadiamQ . ea(wl d))supm >0
0Q o A
Then
Lv=Lov+cv> Lov < Asup |f |
so that

L(U—u)<—)\<sup|f|+>\> <0 in Q.

Since (v —u ’89 > supgo u — u|pg > 0, the minimum principle applied to v — u
implies v —u > 0 in ). Thus we have

supu <supv < supu + <e(ﬁ+l) diam Q __ 1) sup m
Q o0

Corollary 8.2. If Lu = f then supq, |[u| < supyq, |u| + § supq, |f].
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Lemma 8.3 (Banach Fixed Point Theorem). Let ¥ : X — X be a map on a
Banach space (X, || - ) to itself. If
[W(z) = ¥(y)l < Kz -yl
for some K < 1 then there is a unique xg € X such that ¥(xg) = xg.
Proof. The condition implies that ¥ is K-Lipschitz. Since K < 1 there can be

at most one fixed point. To obtain existence, observe that for a fixed yy € X the
sequence (U™ (yo))nenis Cauchy and by continuity of U converges a fixed points. O

Proposition 8.4 (Continuity Method). Assume Lo, L; : X =Y are two bounded
linear maps between two Banach spaces such that for some ¢ > 0 it holds
[Lexlly > cllzlx
where Ly = (1 —t)Lo +tLy and t € [0,1]. Then Ly is surjective if and only if Ly is
surjective.
Proof. Assume for some s € [0,1] the operator L is surjective. The condition
implies that Ly must be also injective.
Let t € [0,1]. Then the equation L;x = y is equivalent to
LSZ‘ + (S — t)(Ll — Lo).]? =Y.
Since L is bijective this is equivalent to
x=(s—t)L; (L1 — Lo)x + L; 'y = Vg, (2).

Now

Wty (2) = Vst () < |s =t/ - 1 L1 = Lol

< ¢ s —tl(|Loll + | Lol)

which implies that ¥, ; , has a unique fixed point if

|s —t] < =¢.

c
([ Loll + [ L |
In particular, if ¢ € (s — ¢, s + ¢) N [0,1] then L; is surjective as this bound is
independent of y € Y and the fixed point satifies L;x = y. Inductively we can show
that L, is surjective if t € (s — (n+ 3)é s+ (n+ 3)é) N [0,1] and L, is surjective.
Since [0, 1] is bounded we immediately get the result. O

If L is uniformly elliptic then for u € Wy*(€2) we have

3 [ e < Afulfyns < Bu(u) = [ fude < £l
so that the global W22-estimate implies
lullw=2 < C[If]2

where C' depends on the ellipticity constants and the Lipschitz norm of the coeffi-
cients. Then
Li=(1—-t)A+tL

would satisfy the W?22-bounds with the same constant. In particular, we would
know that L is surjective between W22(Q) N W,?(Q) and L*(Q) if and only if the
Laplace operator A is surjective between those spaces.

Note that such a result already follows from the general existence theory of
uniformly elliptic operators. In the following we want to obtain a similar existence
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result for uniformly elliptic operators satisfying the Schauder estimates. Assume 2
has C*°-boundary. Using the a priori estimate and the Schauder estimate we also
obtain for u € C2*()

ullc2.00) < CllLullcea()

which shows that L : CS’Q(Q) — C§(2) satisfies the assumption of the Method of
Continuity. Note that the coefficients of L need only to be Holder continuous so
that we cannot use the W?22-estimate which need Lipschitz coefficients.

To see that A is surjective let f € C*(Q) be given and f,, — f in C§() with
fn € C°(€2). The Sobolev theory gives a sequence u,, € Wol’Q(Q) with Au,, = f,
and the regularity theory shows wu,, € C*°(Q2). Now the bound above shows

unlloze @) < Cllfalloa (@)

which shows by Arzela-Ascoli that u,, — w in C%-norm with v € C*%(Q). In
particular, Au = f. By the Method of Continuity there is also a @ € Cg’a(Q) with
Lu=f.

APPENDIX A. TOPOLOGY

Recall that a topological space is a tuple (X, 7) (e.g. R™ with its open sets) such
that 7 C 2%, the set of open subsets, satisfies @, X € 7, UNV erforal U,V € 7
and whenever U; € 7 for an index set ¢ € I then also U;c;U; € 7. Any set C C X
such that X\C' is open, will be called closed. Note that N;c;C is closed whenever
each C;, i € I, is closed.

A sequence (zp,)nen is said to converge to x, denoted by z = lim, o0 2y, if all
open neighborhood U of x, i.e. U € 7 with = € U, there is an ng € N such that
x, € U for all n > nyg.

In general, convergence of sequences is NOT enough to describe the topology
completely. For this one needs the concepts of nets: A net (x;);er in X is “subset”
{z;}ier of X that is indexed by a directed set (I,>). A directed set (I,>) is a
partially order set (> is reflexive and transitive) such that any two elements have
an upper bound, i.e. for each a,b € I there is a ¢ € I such that ¢ > a and ¢ > b.

Now we say that the net (z;);c; converges to x, written x = lim;¢; x; if for open
neighborhoods U of x there is an ig € I such that z; € U for all i > i.

If A C X is any subset then we define the interior int A of A and the closure
cl A of A as follows

intA= U U={x€A|TFUopen:zcUC A}
UCAUer

clA= ﬂ C = {z € X |3net (z;)ier :x:liier?xi}.
ACC,X\Cer

In case of brevity we sometimes'® write c1A = A and int A = A.

A subset A C B be dense in B if for each € B there is a net (x;);er in A
converging to B. This is equivalent to saying that the closure of A and B in X is
the same. The topological space (X, 7) is called separable if it admits a countable
subset D which is dense in X.

HBe aware that for metric spaces the closed ballBy(z) is not necessarily equivalent to the
closure cl(Br(x)), hence the notation A will be avoided if possible!
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Also a set A C X is compact'? if whenever A C U;c;U; for open sets {U; }icr
then there is a finite subset I’ C I such that A C U;c;/U;. One can show that any
compact set has to be closed. Using the concept of nets one can show that a set
A is compact if every net in A admits a convergent subnet with limit in A. Note
however that a set B where every sequences in B admits a convergent subsequence
with limit in A is, in general, not compact. Sets satisfying this condition will be
called sequentially compact.

Let Q be an open set of a topological space X. Then for a subset A C X we say
A is compactly contained in €2, written as A CC €, if

cl(A) Cc

and cl A is compact.

A map f: X — Y between topological spaces (X,7) and (Y,7’) is said to be
continuous if for all V' € 7/ it holds f~1(V) € 7. The function f has compact
support in Q if supp f CC Q.

A metric'® d on X is a symmetric, positive definite function on X x X that
satisfies the triangle inequality, i.e. for all z,y,z € X it holds d(z, z) < d(z,y) +
d(y, z).

Given a metric d on a set X there is a natural topology 74 on X induced by d:

Ta={U €2% |V € UIr >0: B.(z) CU}.

We call the tuple (X, d) a metric space.
Note that if A CC Q2 then the function

x> d(z,0Q) = inf{d(z,y) |y € 00}

is uniformly bounded away from zero on the set A.
The convergence with respect to metric topology 74 is equivalent to the following;:
x; = x in 74 for a net (x;);¢cr iff

Ve > 0dig € IVi > ig : d(a:,xz) < €.

This also show that the topology 74 can descripted entirely by sequences instead of
nets.
The metric also allows one to define the concept of Cauchy sequence, i.e. (zp)nen
is Cauchy if
Ve > 03N € NVn,m > N : d(zy, Tm) < €.

Using the triangle inequality we can show that a converging sequence (z,)nen is
Cauchy. The converse is in general not true. A metric space (X, d) for which every
Cauchy sequence is convergent will be called complete. Hence in a complete metric
space the concept of Cauchy sequences and convergent sequences is equivalent.

If a metric space (X, d) is not complete then there is a (unique up to isomorphism)
completion (X,d) such that (X,d) embeds isometrically in (X,d) such that the
image of X in X is dense. For that reason we often regard X as a subset of the
completion X.

12In a complete metric space (e.g. (R™,||- — - ||)) this is equivalent to “every sequence in A
has a subsequence converging to a point in A”.
13¢.g. on R™ take any norm || - || and define d(z,y) = ||z — y||.
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APPENDIX B. MEASURE AND INTEGRATION THEORY

A measurable space (X,B) is a set X equipped with a o-algebra B C 2%, i.e. B
contains the empty set and is closed under countable unions and complements. If
(X, 7) is a topological space then the Borel o-algebra B(X) is the smallest o-algebra
containing all open set U € 7. A set in A € B(X) will be call (Borel) measurable.

A map p: B(X) — [0, 00] is called a Borel measure if it is monotone, o-additive
and p(@) = 0. The statement “a property B(z) holds for p-almost all x € X”
is a short description for the following: there is a measurable set 2 such that
#(X\Q) = 0 and property P(z) holds for all z € Q.

A function f: X — R is called measurable if for all Borel set A € B(R) the set
f71(A) is measurable. A measurable function is simple if f is of the form

f = Z ;X A;
ieN
for a; € R™ and disjoint Borel set {A; }ien.
For simple functions f : X — [0,00) define

/fdu = Z%‘M(Ai)'

€N
If f: X — [0,00) is measurable then define

/fdu = sup{/ fdu | f:X > [0,00) is a simple measurable function with f< 1}

It is know that there is a sequence f, : X — [0,00) of simple functions such that
frn < fny1 and for pralmost all z € X it holds f(z) = lim, oo fru(x), le. fp
converges p-almost every to f. In that case it can be shown

/ fdp = lim / Fadp.

More generally, the Theorem of Monotone Convergence says that whenever f, :
X — [0,00) is a non-decreasing sequence measurable functions converging almost
everywhere to f then it holds [ fdu = lim,, o [ fndu. Note that f is measurable
as it is the p-almost everywhere limit of measurable functions.

Fatou’s Lemma says that if for a sequence f,, : X — [0, 00) of measurable func-
tion it holds f(x) = liminf, o fn(x) for p-almost all z € X then f is measurable

and
/fd,u Sliminf/fndu.
n—oo

We say a measurable function f : X — R is p-integrable if ffidu < o0, Or
equivalently [ |f|du < oo. Denote the space of u-integrable functions by L'(p).
The assignment f — [ |f|dp induces a norm on L* (1) and makes it into a complete
Banach space. Furthermore, we define

[ in= [ redu [ £

The Theorem of Dominated Convergence says if a sequence of p-integrable func-
tions f, : X — R converges p-almost everywhere to f : X — R and |f,| < g for a
p-integrable function then f is p-integrable and [ fdp = limy, o0 [ frdp.
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On R™ equipped with a norm || - || there is a unique Borel measure A", called
the Lebesgue measure (associated to (R™, || - ||)) that is translation invariant'* and
satisfies

A(B1(0) = wp = .
r(2+1)
Note that A\ depends on the norm ||-||. However, the Lebesgue measures associated

to two given norm different by a (multiplicative constant). If one chooses the
norm induced by the standard scalar product on R™ the measure A" is the “usual”
Lebesgue measure.

For each open subset 2 C R™ the Lebesgue measure induces a natural measure
)\"IQ (usually also denoted by A™) by restricting A" to subsets of £2. We denote the
space of \"-integrable functions on Q by L!(€).

If Q C R” is open and bounded and 0f2 is “sufficiently” then there is a natural
measure A\”~! on 9 such that for all continuous functions f : R® — R it holds

/fdz—/fd)\” 1—hm fdA™.
(89).

Again the measure A" ~! depends on the norm (resp. metric) chosen on R".

APPENDIX C. POLAR COORDINATES.

Let f : R™ — R an integrable function with compact support (e.g. f is a bounded

function) then
/f(a:)dxz/o /GBT(O) f(z)dzdr.

If we observe that for each z € 8B,.(0) there is a unique w € 9B;(0) = S"~! such
that z = rw and that

|0B,(0)] = "~10B1(0)]

we immediately the formula for polar coordinates, i.e.

/f(ﬂﬁ)dif = /Or - f(rw)r™dwdr.

Furthermore, we can translate « — = — a to also obtain the following

/f(x)dx = /OT - fla+ rw)r" tdwdr.

APPENDIX D. LIST OF DEFINITION/SYMBOLS

For a topological space (X,7) and A C X:

ntA=A= |J U

ADU open

clA=A= ﬂ C.

ACC closed

14 n(4) = A"(A + ) for all measurable set A and € R"
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If (X,d) is a metric space and A C X then
B(x) = {y € X |d(z,y) <r}
B (x) = {y € X|d(z,y) <r}
A. = 7€ — neighrborhood of A” = U B (z).
z€A
The function x4 : X — R is defined as

s

For functions f : X — R and measures u (on a given o-algebra):

_ 1 _fAfdM
]ifd”_ 1(A) ./Afdu_ Jadp
{fxct={rxeX|f(x)xc} forxe{<,> > < =#}

supp f = cl{f(z) # 0}

I+ = X0y - f

f-=—Xxqr<0y - f
f=f—I-
|fl=f++ f-

() =17 X > R| [ 17Pdn < o0)
esssup,, f =sup{r € R|u({f >r}) > 0}
essinf,, f = —esssup f.

For functions f : R™ — R and the n-dimensional Lebesgue measure A" and
measurable sets A C R

/A fdx = /A fa\

esssup f = esssupyn f
esssupg, f = ess sup/\n’ f
Q
) = {f: Q= R] fQ|f|pdx<oo} p € (0,00)
esssupgq | f| < oo p =00

If 2 C R™ is open and bounded with 92 “nice” then

1
/ fdz = / FaN [ =7 lim — / fdev ).
o0 20 =0 2€¢ Jip0).
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