

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

JNIVERSITÄT

TÜBINGEN

Project 1

Exercise (Perron's Method for general solution operators) (15 points *) This project is optional.

Assume $\Omega \subset \mathbb{R}^n$ is an connected open set. Assume the following concepts are given.

Solution operator

Given any ball $B_r(x) \subset \Omega$ there is a *linear* operator $P_B : C^0(\partial B_r(x)) \to C^0(\bar{B}_r(x))$ such that given $g \in C^0(\partial B_r(x))$ and $h := P_{B_r(x)}g$ it holds

- $h\big|_{\partial B_r(x)} = g.$
- if $g \equiv c$ for some $c \in \mathbb{R}$ then

$$h \equiv c \quad \text{on } \bar{B}_r(x)$$

• h satisfies the Harnack inequality on $\Omega^+ = \inf\{h \ge 0\}$, i.e. for $\Omega' \subset \subset \Omega^+$ there is a constant C > 0, not depending on h, such that

$$\sup_{\Omega'} h \le C \inf_{\Omega'} h.$$

Weak subharmonicity

A function $u \in C^0(\Omega)$ is called *weakly subharmonic* if for all $B_r(x) \subset \Omega$ it holds

$$u \leq P_B g$$
 on $\bar{B}_r(x)$

whenever $u|_{\partial B_r(x)} \leq g$. If both u and -u are weakly subharmonic then u is called *weakly harmonic*.

Prove the following theorem.

Theorem (Perron's Method). Let $g \in C^0(\partial\Omega)$ and define

 $S_{-} = \{ u \in C^{0}(\overline{\Omega}) \mid u \text{ is weakly subharmonic and } u |_{\partial \Omega} \leq g \}.$

Then the function u_* defined by

$$u_*(x) = \sup_{u \in S_-} u(x)$$

is weakly harmonic in Ω .

In order to use the proof of Perron's theorem for mean-value harmonic functions it might help to prove the following.

• the set of weakly harmonic functions is a vector spaces

10.05.2017

- any harmonic function satisfies the strong minimum principle (and thus the strong maximum principle)
- a weakly subharmonic function satisfies the maximum principle
- Harnack's Convergence Theorem holds for weakly harmonic functions
- if u_1 and u_2 are weakly subharmonic then $\max\{u_1, u_2\}$ is weakly subharmonic
- the Replacement Lemma holds, i.e. if u is subharmonic in Ω and $B \subset \subset \Omega$ is a ball then

$$\tilde{u}(x) = \begin{cases} P_B(u|_{\partial B})(x) & x \in \bar{B} \\ u(x) & x \in \Omega \setminus \bar{B} \end{cases}$$

is also subharmonic.

Each of those can be obtained by slight variations of the proofs of corresponding statements in the lecture notes and by the solution of **Exercise** 12.