

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

JNIVERSITÄ

TUBINGEN

Exercise sheet 10

Exercise 34

(4 points) Let Ω be a bounded convex domain in \mathbb{R}^n with n > 2. Assume for an L^2 -function u all its weak derivatives g_{ij} , $i, j \in \{1, \ldots, n\}$, are zero. Show that u is a smooth affine function, i.e. u((1-t)x + ty) = (1-t)u(x) + tu(y).

Exercise 35

Let L be a uniformly elliptic operator in divergence form with $a^{ij}, b^k, c \in C^{\infty}(\overline{\Omega})$ on a convex domain Ω .

(a) (3 points) Let $g : \mathbb{R} \to \mathbb{R}$ be a smooth function with g(0) = 0 and bounded derivatives of all order. Show that any solution $u \in W_0^{1,2}(\Omega)$ to the equation

$$Lu = g(u)$$

is smooth.

(b) (3 points) Assume $b^k, c \equiv 0$ and suppose $-Lu = \lambda_{\min} \cdot u$ for $u \in W_0^{1,2}(\Omega)$ and

$$\lambda_{\min} = \inf_{\tilde{u} \in W_0^{1,2}(\Omega)} \frac{B_L(\tilde{u}, \tilde{u})}{\langle \tilde{u}, \tilde{u} \rangle_{L^2}} > 0.$$

Show that v = |u| is also smooth and satisfies $-Lv = \lambda_{\min} \cdot v$. Conclude that u is either positive or negative and the set of all $v \in W_0^{1,2}(\Omega)$ satisfying $-Lv = \lambda_{\min} \cdot v$ is 1-dimensional, i.e. first (non-trivial) eigenvalue is simple.

(Hint: Recall that $|u| \in W^{1,2}(\Omega)$ if $u \in W^{1,2}(\Omega)$.)

Exercise 36

(4 points *) Let L_0 and L_1 be two bounded linear operators between two Banach space X and Y. For $t \in [0, 1]$ define

$$L_t = (1 - t)L_0 + tL_1.$$

Assume, in addition, there is a c > 0 not depending on t such that

$$c\|u\|_X \le \|L_t u\|_Y$$

for all $u \in X$ and $t \in [0, 1]$, show that L_1 is onto if and only if L_0 is onto.

Deadline 10.07.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

03.07.2016