Linear PDE

03.07.2016

Exercise sheet 10

Exercise 34

(4 points) Let Ω be a bounded convex domain in \mathbb{R}^{n} with $n>2$. Assume for an L^{2}-function u all its weak derivatives $g_{i j}, i, j \in\{1, \ldots, n\}$, are zero. Show that u is a smooth affine function, i.e. $u((1-t) x+t y)=(1-t) u(x)+t u(y)$.

Exercise 35

Let L be a uniformly elliptic operator in divergence form with $a^{i j}, b^{k}, c \in C^{\infty}(\bar{\Omega})$ on a convex domain Ω.
(a) (3 points) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function with $g(0)=0$ and bounded derivatives of all order. Show that any solution $u \in W_{0}^{1,2}(\Omega)$ to the equation

$$
L u=g(u)
$$

is smooth.
(b) (3 points) Assume $b^{k}, c \equiv 0$ and suppose $-L u=\lambda_{\text {min }} \cdot u$ for $u \in W_{0}^{1,2}(\Omega)$ and

$$
\lambda_{\min }=\inf _{\tilde{u} \in W_{0}^{1,2}(\Omega)} \frac{B_{L}(\tilde{u}, \tilde{u})}{\langle\tilde{u}, \tilde{u}\rangle_{L^{2}}}>0 .
$$

Show that $v=|u|$ is also smooth and satisfies $-L v=\lambda_{\min } \cdot v$. Conclude that u is either positive or negative and the set of all $v \in W_{0}^{1,2}(\Omega)$ satisfying $-L v=\lambda_{\min } \cdot v$ is 1-dimensional, i.e. first (non-trivial) eigenvalue is simple.
(Hint: Recall that $|u| \in W^{1,2}(\Omega)$ if $u \in W^{1,2}(\Omega)$.)

Exercise 36

(4 points $\left.{ }^{*}\right)$ Let L_{0} and L_{1} be two bounded linear operators between two Banach space X and Y. For $t \in[0,1]$ define

$$
L_{t}=(1-t) L_{0}+t L_{1} .
$$

Assume, in addition, there is a $c>0$ not depending on t such that

$$
c\|u\|_{X} \leq\left\|L_{t} u\right\|_{Y}
$$

for all $u \in X$ and $t \in[0,1]$, show that L_{1} is onto if and only if L_{0} is onto.

Deadline 10.07.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

