

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

JNIVERSITÄT

ÜBINGEN

Exercise sheet 12

Exercise 40

(3 points) Let L be a uniformly elliptic operator on \mathbb{R}^n with $b^k \equiv c \equiv 0$ and Lu = 0 weakly for $u \in W_{loc}^{1,2}(\mathbb{R}^n)$. Show that there is a constant $C = C(n, \lambda, \Lambda) > 2$ such that for all R > 0 it holds

$$\int_{B_R(x_0)} |\nabla u|^2 dx \le \frac{C^2}{R^2} \int_{B_{2R}(x_0)} u^2 dx$$

(Hint: Choose the cut-off function $\eta_{x_0,R}$ with $|\nabla \eta| \leq \frac{C}{R}$ and argue as in the proof of the Cacciopoli inequalty).

(2 points *) Use the inequality to show that $u \equiv 0$ if u has finite L^2 -norm on \mathbb{R}^n .

Exercise 41

Let u be a harmonic function on \mathbb{R}^n .

(a) (3 points) Show that for all $x_0 \in \mathbb{R}^n$ and R > 0 it holds

$$\sup_{B_R(x_0)} |\nabla u| \le \frac{2^n \cdot C}{R} \sup_{B_{4R}(x_0)} |u|.$$

(Hint: Use Exercise 8 (e), the mean-value property for subharmonic functions and the previous inequality to obtain an estimate of $|\nabla u|^2(y)$ for $y \in B_R(x_0)$.)

(b) (2 points) Use this to show that any harmonic function on \mathbb{R}^n satisfying

$$|u(x)| \le D(1 + ||x||)$$

for some D > 0 is linear, i.e. u is of the form $x \mapsto \langle b, x \rangle + c$. (Hint: Use Exercise 14 [Liouville's Theorem] to show $(\partial_i u)_{i=1}^n \equiv \text{const}$ and conclude $b \equiv (\partial_i u)_{i=1}^n$)

- (c) (1 point *) Conclude that a sublinearly growing harmonic function must be constant.
- (d) (3 points *) Show that any harmonic function on \mathbb{R}^n of at most polynomial growth of order k (see below) must be a polynomial of order at most k, i.e. $D^k u \equiv \text{const.}$

Definition. A function has at most *polynomial growth* of order k if

$$D_{u,k}:=\lim_{r\to\infty}\sup_{\|x\|\geq r}\frac{|u(x)|}{1+\|x\|^k}<\infty.$$

If $D_{u,1} = 0$ then it is said to have sublinear growth.

17.07.2016

Exercise 42

Let L be a uniformly elliptic operator with $b^k \equiv c \equiv 0$ and $\Omega' \subset \subset \Omega$. From the Schauder estimates we know that there is a constant $C = C(n, \lambda, \Lambda, [a^{ij}]_{\alpha}, d(\Omega', \partial\Omega)) > 0$ such that

 $||u||_{C^{2,\alpha}(\Omega')} \le C(||Lu||_{C^{0,\alpha}(\Omega)} + ||u||_{C^{0}(\Omega)}).$

- (a) (2 points) Show if $(a^{ij})_{i,j=1}^n$ is constant then $Lu \in C^{k,\alpha}(\Omega)$ implies $u \in C^{k+2,\alpha}(\Omega')$. (Hint: Bound the $C^{2,\alpha}$ -norm of $\partial_i^h u$ for $|h| < \frac{1}{2}d(\Omega',\partial\Omega)$ and use Arzela–Ascoli to conclude $\partial_i u \in C^{2,\alpha}(\Omega')$).
- (b) (3 points *) Show that there is a constant $C_k = C_k(n, \lambda, \Lambda, ||a^{ij}||_{k,\alpha}, d(\Omega', \partial\Omega)) > 0$ such that

 $||u||_{C^{k+2,\alpha}(\Omega')} \le C_k ||Lu||_{C^{k,\alpha}(\Omega)} + ||u||_{C^0(\Omega)}).$