Linear PDE

Summer semester 2017

02.05.2017

Exercise sheet 2

Exercise 6

(1 point) Let $u \in C^{2}(\Omega)$ be non-negative and subharmonic, i.e. $\Delta u \geq 0$. Use the chain rule to show that the functions $|u|^{p}, p \geq 2$, are subharmonic. What fails for $|u|^{p}, p \in[1,2)$?

Exercise 7

Assume that $u \in C^{2}(\Omega)$ is harmonic in Ω.
(a) (1 point) Show that $|u|^{p}$ is harmonic for some $p \geq 2$ if and only if u is constant?
(b) (2 points) Use the mean value property to show that $\partial_{i} u$ is (mean-value) harmonic in Ω.

Exercise 8

Let $u \in C^{0}(\Omega)$ be non-negative and mean-value subharmonic in Ω, i.e. for all $B_{r}(x) \subset \subset \Omega$ it holds

$$
u(x) \leq f_{B_{r}(x)} u(y) d y
$$

(a) (2 points) Use Hölder inequality to show that the functions $|u|^{p}, p \geq 1$, are mean-value subharmonic in Ω. (Hint: Look at the functions $\chi_{B_{r}(x)} u$ and $\left.\chi_{B_{r}(x)}\right)$
(b) (1 point $\left.{ }^{*}\right)$ Why can the assumption $u \geq 0$ be dropped if u is mean-value harmonic?
(c) (2 points $\left.{ }^{*}\right)$ Give an alternative proof using Jensen's inequality. Use this to show that $\psi(u)$ is mean-value subharmonic for any strictly increasing, convex function $\psi:[0, \infty) \rightarrow[0, \infty)$ with $\psi(0)=0$.
(d) (1 point) Conclude that for harmonic functions $u \in C^{2}(\Omega)$, the gradient $|\nabla u|^{2}(x):=\sum_{i=1}^{n}\left(\partial_{i} u(x)\right)^{2}$ is mean-value subharmonic.

Exercise 9

(3 points) Let $a^{i j}, b^{k}: \Omega \rightarrow \mathbb{R}, i, j, k \in\{1, \ldots, n\}$, be continuous functions on Ω such that $\left(a^{i j}(x)\right)_{i, j=1}^{n} \in$ $\mathbb{R}_{\text {sym }}^{n \times n}$ and the operator $L: C^{2}(\Omega) \rightarrow C^{0}(\Omega)$ defined by

$$
L u(x)=\sum_{i, j=1}^{n} a^{i j}(x) \partial_{i j} u(x)+\sum_{k=1}^{n} b^{k}(x) \partial_{k} u(x)
$$

is elliptic (with $c=0$).
(a) Show that if $B \in \mathbb{R}_{\mathrm{sym}}^{n \times n}$ has non-negative spectrum, i.e. $\sigma(B) \subset[0, \infty)$, then the trace $\operatorname{tr}(B)=$ $\sum_{i=1}^{n} b^{i j}$ is non-negative. (Hint: Use $\operatorname{tr}(B)=\sum_{i=1}^{n}\left\langle v_{i}, B v_{i}\right\rangle$ for any orthonormal basis $\left\{v_{i}\right\}_{i=1}^{n}$).
(b) Show that any function $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ with $L u(x)>0$ for $x \in \Omega$ attains its maximum on the boundary of Ω, i.e. $u(x)<\sup _{\Omega} u$ for all $x \in \Omega$.
(Hint: Show that $\sum a^{i j}(x) \partial_{i j} u(x)=\operatorname{tr}\left(A \cdot D^{2} u\right)$ where $A=\left(a^{i, j}\right)_{i j=1}^{n}$ and $D^{2} u$ is the Hessian of u and use properties of the first and second derivatives at (local) maxima.)

Deadline 08.05.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

