

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

JNIVERSITÄ

UBINGEN

Exercise sheet 3

Exercise 10

(2 points) Let $u \in C^0(\Omega)$ be harmonic and $\lambda : [0, \infty) \to [0, \infty)$ be a function with compact support in $[0, \epsilon]$ and $\int_{B_{\epsilon}(0)} \lambda(\|y\|) dy = 1$. Show that for any $x \in \Omega$ with $d(x, \partial \Omega) > \epsilon$ it holds

$$u(x) = \int_{B_{\epsilon}(x)} \lambda(\|x - y\|) u(y) dy$$

(Hint: Use polar coordinates at x!). (1 points *) Show the corresponding result for mean-value subharmonic functions.

Exercise 11

(2 points) Assume for a given $f \in C^0(\Omega)$ there is a $w \in C^2(\Omega) \cap C^0(\overline{\Omega})$ with $\Delta w = f$. Show that for any $g \in C^0(\overline{\Omega})$ the Poisson equation

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ \left. u \right|_{\partial \Omega} = g \end{cases}$$

has a solution in $C^2(\Omega) \cap C^0(\overline{\Omega})$.

(1 point *) Using this argument, what is needed to show that the solution is in $C^k(\Omega)$ (resp. in $C^k(\Omega) \cap C^l(\overline{\Omega})$)?

Exercise 12

(3 points) Assume $u \in C^0(\overline{\Omega})$ is non-negative with $\inf_{\Omega} u = 0$ and satisfies the Harnack inequality, i.e. for all $\Omega' \subset \subset \Omega$ there is a C > 0 such that

$$\sup_{\Omega'} u \leq C \inf_{\Omega'} u.$$

Show that u satisfies the strong minimum principle, i.e. it holds

$$\inf_{\Omega} u = \inf_{\partial \Omega} u$$

and if $u(x_0) = \inf_{\Omega} u = 0$ for some $x_0 \in \Omega$ then u is constant in Ω .

Exercise 13

(Running exercise) Let $(X, \|\cdot\|)$ be a Banach space, i.e. a complete normed vector space, such that the norm $\|\cdot\|$ is *p*-uniformly convex for some $p \ge 2$, i.e. for there is a constant $C_p > 0$ such that all $v, w \in X$ it holds

$$\left\|\frac{v+w}{2}\right\|^{p} + C_{p} \|v-w\|^{p} \le \frac{1}{2} \|w\|^{p} + \frac{1}{2} \|v\|^{p}.$$

Let $C \subset X$ be a closed, bounded and convex¹ set. Define a function $r_C: X \to [0, \infty)$ by

$$r_C(v) := \inf\{\|v - w\| \, | \, v \in C\}$$

05.05.2017

¹C is convex if for all $v, w \in C$ and $\lambda \in [0, 1]$ it holds $\lambda v + (1 - \lambda)w \in C$

(a) (1 point) Show that the set

$$\pi_C(v) := \{ \tilde{w} \in C \mid ||v - \tilde{w}|| = r_C(v) \}$$

contains at most one element. (Hint: $||w_n - w_m|| = ||(v - w_n) - (v - w_m)||$.)

(b) (2 points) Fix $v \in X$ and let $(w_n)_{n \in \mathbb{N}}$ be a sequence in C such that

$$r_C(v) = \lim_{n \to \infty} \|v - w_n\|.$$

Show that $(w_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. (Hint: Note that $r_C(v) \leq \left\| \frac{(v-w_n)+(v-w_m)}{2} \right\|$.) Infer that for each $v \in C$ the set $\pi_C(v)$ contains exactly one element which is called the nearest point projection of v onto C.

(c) (2 points *) Since $\pi_C : X \to 2^C$ is single-valued, there is a uniquely defined map $p_C : X \to X$ such that $p_C(v) \in \pi_V(v)$. Show that p_C is continuous. (Hint: Show r_C is continuous. Use this to show that $(w_n)_{n \in \mathbb{N}} = (p_C(v_n))_{n \in \mathbb{N}}$ is Cauchy if $v_n \to v$.)