Linear PDE

05.05.2017

Exercise sheet 3

Exercise 10

(2 points) Let $u \in C^{0}(\Omega)$ be harmonic and $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function with compact support in $[0, \epsilon]$ and $\int_{B_{\epsilon}(0)} \lambda(\|y\|) d y=1$. Show that for any $x \in \Omega$ with $d(x, \partial \Omega)>\epsilon$ it holds

$$
u(x)=\int_{B_{\epsilon}(x)} \lambda(\|x-y\|) u(y) d y
$$

(Hint: Use polar coordinates at x !).
(1 points ${ }^{*}$) Show the corresponding result for mean-value subharmonic functions.

Exercise 11

(2 points) Assume for a given $f \in C^{0}(\Omega)$ there is a $w \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ with $\Delta w=f$. Show that for any $g \in C^{0}(\bar{\Omega})$ the Poisson equation

$$
\left\{\begin{array}{l}
\Delta u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=g
\end{array}\right.
$$

has a solution in $C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$.
(1 point ${ }^{*}$) Using this argument, what is needed to show that the solution is in $C^{k}(\Omega)$ (resp. in $\left.C^{k}(\Omega) \cap C^{l}(\bar{\Omega})\right) ?$

Exercise 12

(3 points) Assume $u \in C^{0}(\bar{\Omega})$ is non-negative with $\inf _{\Omega} u=0$ and satisfies the Harnack inequality, i.e. for all $\Omega^{\prime} \subset \subset \Omega$ there is a $C>0$ such that

$$
\sup _{\Omega^{\prime}} u \leq C \inf _{\Omega^{\prime}} u
$$

Show that u satisfies the strong minimum principle, i.e. it holds

$$
\inf _{\Omega} u=\inf _{\partial \Omega} u
$$

and if $u\left(x_{0}\right)=\inf _{\Omega} u=0$ for some $x_{0} \in \Omega$ then u is constant in Ω.

Exercise 13

(Running exercise) Let $(X,\|\cdot\|)$ be a Banach space, i.e. a complete normed vector space, such that the norm $\|\cdot\|$ is p-uniformly convex for some $p \geq 2$, i.e. for there is a constant $C_{p}>0$ such that all $v, w \in X$ it holds

$$
\left\|\frac{v+w}{2}\right\|^{p}+C_{p}\|v-w\|^{p} \leq \frac{1}{2}\|w\|^{p}+\frac{1}{2}\|v\|^{p} .
$$

Let $C \subset X$ be a closed, bounded and convex ${ }^{1}$ set. Define a function $r_{C}: X \rightarrow[0, \infty)$ by

$$
r_{C}(v):=\inf \{\|v-w\| \mid w \in C\}
$$

[^0](a) (1 point) Show that the set
$$
\pi_{C}(v):=\left\{\tilde{w} \in C \mid\|v-\tilde{w}\|=r_{C}(v)\right\}
$$
contains at most one element. (Hint: $\left\|w_{n}-w_{m}\right\|=\left\|\left(v-w_{n}\right)-\left(v-w_{m}\right)\right\|$.)
(b) (2 points) Fix $v \in X$ and let $\left(w_{n}\right)_{n \in \mathbb{N}}$ be a sequence in C such that
$$
r_{C}(v)=\lim _{n \rightarrow \infty}\left\|v-w_{n}\right\| .
$$

Show that $\left(w_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. (Hint: Note that $r_{C}(v) \leq\left\|\frac{\left(v-w_{n}\right)+\left(v-w_{m}\right)}{2}\right\|$.) Infer that for each $v \in C$ the set $\pi_{C}(v)$ contains exactly one element which is called the nearest point projection of v onto C.
(c) $\left(2\right.$ points $\left.{ }^{*}\right)$ Since $\pi_{C}: X \rightarrow 2^{C}$ is single-valued, there is a uniquely defined map $p_{C}: X \rightarrow X$ such that $p_{C}(v) \in \pi_{V}(v)$. Show that p_{C} is continuous.
(Hint: Show r_{C} is continuous. Use this to show that $\left(w_{n}\right)_{n \in \mathbb{N}}=\left(p_{C}\left(v_{n}\right)\right)_{n \in \mathbb{N}}$ is Cauchy if $v_{n} \rightarrow v$.)

[^0]: ${ }^{1} C$ is convex if for all $v, w \in C$ and $\lambda \in[0,1]$ it holds $\lambda v+(1-\lambda) w \in C$

