

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

UNIVERSITÄT

TUBINGEN

Exercise sheet 4

Exercise 14

(3 points) Let $u \in C^0(\mathbb{R}^n)$ be harmonic and non-constant. Show that u is unbounded, i.e. there are sequences $(x_n^{\pm})_{n\in\mathbb{N}}$ such that $u(x_n^{\pm}) \to \pm \infty$. (Hint: Use Harnack Inequality for Euclidean balls.)

Exercise 15

(2 points) By definition, a closed set $C \subset \mathbb{R}^n$ is convex if and only if there are linear functions $f_i : \mathbb{R}^n \to \mathbb{R}$ and constants $\lambda_i \in \mathbb{R}$, $i \in I$, such that

$$C = \bigcap_{i \in I} \{ f_i \le \lambda_i \}.$$

Show that any bounded convex domain Ω has regular boundary. Note Ω is also convex.

Exercise 16

(1 point) Assume that there is a (mean-value) subharmonic function $b \in C^0(\overline{\Omega})$ such that $b(x_0) > b(x)$ for all $x \in \overline{\Omega} \setminus \{x_0\}$. Show that $x_0 \in \partial \Omega$ is regular.

Exercise 17

(2 points) Assume $b \in C^2(\overline{\Omega} \cap B_r(x_0))$ is a subharmonic function satisfying $b(x) < b(x_0) = 0$ for $x \in \overline{\Omega} \cap B_r(x_0) \setminus \{x_0\}$. Show that it is possible to extend b to a lower barrier function $\tilde{b} : C^0(\overline{\Omega}) \to (-\infty, 0]$ at x_0 .

Exercise 18

(Running exercise) Let $(X, \|\cdot\|)$ be a Banach space, i.e. a complete normed vector space, such that the norm $\|\cdot\|$ is *p*-uniformly convex for some $p \ge 2$, i.e. for there is a constant $C_p > 0$ such that all $v, w \in X$ it holds

$$\left\|\frac{v+w}{2}\right\|^{p} + C_{p} \left\|v-w\right\|^{p} \le \frac{1}{2} \left\|w\right\|^{p} + \frac{1}{2} \left\|v\right\|^{p}.$$

(a) (2 points) Let $(C_n)_{n \in \mathbb{N}}$ be a sequence of bounded, closed and convex subsets of X with $C_n \supset C_{n+1}$. Show that

 $\bigcap C_n \neq \varnothing.$

(Hint: Let $r = \sup_{n \in \mathbb{N}} r_{C_n}$ where $r_{C_n} : X \to [0, \infty)$ is as in the previous sheet. Show that any sequence $w_n \in C_n$ with $r(v) = \lim_{n \in \mathbb{N}} ||v - w_n||$ is Cauchy and its limit point is in $\cap_{n \in \mathbb{N}} C_n$.) (1 point *) Why is boundedness of C_n important? Give a counterexample in \mathbb{R}^n .

(b) (3 point *) Let $(C_i)_{i \in I}$ be a net of bounded, closed and convex subsets of X with $C_i \supset C_j$ whenever $j \ge i$. Show that $\bigcap_{i \in I} C_i \ne \emptyset$.

(Hint: Choose $w_i \in C_i$ with $\lim_{i \in I} ||v - w_i|| = \sup_{i \in I} r_{C_i}(v)$ and argue as before. Show that the set $I_{i_0} := \{i \in I \mid i \geq i_0\}$ for $i_0 \in I$ is a directed set and the net $(w_i)_{i \in I_{i_0}}$ converges to the same limit as $(w_i)_{i \in I}$. Conclude that w is in every *closed* set C_i .)

Deadline 22.05.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

11.05.2017