Linear PDE

Summer semester 2017

Exercise sheet 4

Exercise 14

(3 points) Let $u \in C^{0}\left(\mathbb{R}^{n}\right)$ be harmonic and non-constant. Show that u is unbounded, i.e. there are sequences $\left(x_{n}^{ \pm}\right)_{n \in \mathbb{N}}$ such that $u\left(x_{n}^{ \pm}\right) \rightarrow \pm \infty$. (Hint: Use Harnack Inequality for Euclidean balls.)

Exercise 15

(2 points) By defininition, a closed set $C \subset \mathbb{R}^{n}$ is convex if and only if there are linear functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and constants $\lambda_{i} \in \mathbb{R}, i \in I$, such that

$$
C=\bigcap_{i \in I}\left\{f_{i} \leq \lambda_{i}\right\} .
$$

Show that any bounded convex domain Ω has regular boundary. Note $\bar{\Omega}$ is also convex.

Exercise 16

(1 point) Assume that there is a (mean-value) subharmonic function $b \in C^{0}(\bar{\Omega})$ such that $b\left(x_{0}\right)>b(x)$ for all $x \in \bar{\Omega} \backslash\left\{x_{0}\right\}$. Show that $x_{0} \in \partial \Omega$ is regular.

Exercise 17

(2 points) Assume $b \in C^{2}\left(\bar{\Omega} \cap B_{r}\left(x_{0}\right)\right)$ is a subharmonic function satisfying $b(x)<b\left(x_{0}\right)=0$ for $x \in \bar{\Omega} \cap B_{r}\left(x_{0}\right) \backslash\left\{x_{0}\right\}$. Show that it is possible to extend b to a lower barrier function $\tilde{b}: C^{0}(\bar{\Omega}) \rightarrow(-\infty, 0]$ at x_{0}.

Exercise 18

(Running exercise) Let $(X,\|\cdot\|)$ be a Banach space, i.e. a complete normed vector space, such that the norm $\|\cdot\|$ is p-uniformly convex for some $p \geq 2$, i.e. for there is a constant $C_{p}>0$ such that all $v, w \in X$ it holds

$$
\left\|\frac{v+w}{2}\right\|^{p}+C_{p}\|v-w\|^{p} \leq \frac{1}{2}\|w\|^{p}+\frac{1}{2}\|v\|^{p} .
$$

(a) (2 points) Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of bounded, closed and convex subsets of X with $C_{n} \supset C_{n+1}$. Show that

$$
\bigcap C_{n} \neq \varnothing .
$$

(Hint: Let $r=\sup _{n \in \mathbb{N}} r_{C_{n}}$ where $r_{C_{n}}: X \rightarrow[0, \infty)$ is as in the previous sheet. Show that any sequence $w_{n} \in C_{n}$ with $r(v)=\lim _{n \in \mathbb{N}}\left\|v-w_{n}\right\|$ is Cauchy and its limit point is in $\cap_{n \in \mathbb{N}} C_{n}$.) $\left(1\right.$ point $\left.{ }^{*}\right)$ Why is boundedness of C_{n} important? Give a counterexample in \mathbb{R}^{n}.
(b) $\left(3\right.$ point $\left.{ }^{*}\right)$ Let $\left(C_{i}\right)_{i \in I}$ be a net of bounded, closed and convex subsets of X with $C_{i} \supset C_{j}$ whenever $j \geq i$. Show that $\bigcap_{i \in I} C_{i} \neq \varnothing$.
(Hint: Choose $w_{i} \in C_{i}$ with $\lim _{i \in I}\left\|v-w_{i}\right\|=\sup _{i \in I} r_{C_{i}}(v)$ and argue as before. Show that the set $I_{i_{0}}:=\left\{i \in I \mid i \geq i_{0}\right\}$ for $i_{0} \in I$ is a directed set and the net $\left(w_{i}\right)_{i \in I_{i_{0}}}$ converges to the same limit as $\left(w_{i}\right)_{i \in I}$. Conclude that w is in every closed set C_{i}.)

Deadline 22.05.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

