Linear PDE

Summer semester 2017

Exercise sheet 5

Exercise 19

Let Ω be an open, bounded and connected domain in \mathbb{R}^{n}. Assume L is an elliptic operator with $c \leq 0$ and $\sup _{k=1}^{n} \frac{\left|b^{k}\right|}{\lambda} \leq$ const where $\lambda: \Omega \rightarrow(0, \infty)$ is the lower ellipticity constant of $\left(a^{i, j}: \Omega \rightarrow \mathbb{R}\right)_{i, j=1}^{n}$. Assume $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ and define $u^{+}=\max \{0, u\}$.
(a) (2 points) Show the following form of the maximum principle: If $L u \geq 0$ in Ω then

$$
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+} .
$$

(Hint: Look at $\Omega^{+}=\operatorname{int}\{u \geq 0\}$ and use facts of the elliptic operator $\tilde{L}=L-c$.).
(b) (1 point) Conclude that $L u=0$ on Ω and $\left.u\right|_{\partial \Omega}=0$ implies $u=0$. (Hint: What is the corresponding minimum principle?)
(c) (1 point) Show that if $L u \geq 0$ and u assumes a positive maximum at some $x \in \Omega$ then u is constant in Ω.

Exercise 20

Let Ω be as above. For $T>0$ set $Q=\Omega \times(0, T)$ and define $\partial^{\prime} Q=\partial \Omega \times(0, T) \cup \Omega \times\{0\}$. Assume L is an elliptic operator on Ω with $c=0$ and $u \in C^{2}(Q) \cap C^{0}(\bar{Q})$.
(a) (2 points) Show that if $\partial_{t} u-L u<0$ then the strong (parabolic) maximum principle holds in Q, i.e.

$$
\sup _{Q} u=\sup _{\partial^{\prime} Q} u>u(x, t) \quad \text { for all }(x, t) \in Q .
$$

(Hint: Choose $Q^{\prime}=\Omega \times\left(0, T^{\prime}\right)$ for $T^{\prime} \in(0, T)$ and argue as in the elliptic case with Q^{\prime}. The same argument also excludes maximum points in $\Omega \times\left\{T^{\prime}\right\}$. Conclude by letting $T^{\prime} \rightarrow T$).
(b) (1 point) Use the function $v(x, t):=-t$ to show that the weak maximum principle holds for functions u satisfying $\partial_{t} u-L u \leq 0$ in Q, i.e. $\sup _{Q} u=\sup _{\partial^{\prime} Q} u$.
(c) (1 point) Conclude that $\partial_{t} u-L u=\partial_{t} v-L v$ and $\left.u\right|_{\partial^{\prime} Q}=\left.v\right|_{\partial^{\prime} Q}$ for functions $u, v \in C^{2}(Q) \cap C^{0}(\bar{Q})$ implies $u=v$ in Q.
(d) (4 points ${ }^{*}$) Assume $c=b^{k}=0, k=1, \ldots, n$, to show the strong parabolic maximum principle for the parabolic operator $\partial_{t}-L$. Use functions of the form

$$
v_{\alpha, y, t, R}(t, x)=e^{-\alpha\left(\|x-y\|^{2}+|t-s|^{2}\right)}-e^{-\alpha R^{2}} .
$$

Exercise 21

(2 points) Let $u \in C^{1}((0,1))$ show for $x, y \in(0,1)$ and $p \in(1, \infty)$ it holds

$$
|u(x)-u(y)| \leq|x-y|^{1-\frac{1}{p}}\left\|u^{\prime}\right\|_{p} .
$$

Deadline 29.05.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

