

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

JIVERSITÄ

ÜBINGEN

Exercise sheet 5

Exercise 19

Let Ω be an open, bounded and connected domain in \mathbb{R}^n . Assume L is an elliptic operator with $c \leq 0$ and $\sup_{k=1}^n \frac{|b^k|}{\lambda} \leq \text{const}$ where $\lambda : \Omega \to (0, \infty)$ is the lower ellipticity constant of $(a^{i,j} : \Omega \to \mathbb{R})_{i,j=1}^n$. Assume $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ and define $u^+ = \max\{0, u\}$.

(a) (2 points) Show the following form of the maximum principle: If $Lu \ge 0$ in Ω then

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+.$$

(Hint: Look at $\Omega^+ = \inf\{u \ge 0\}$ and use facts of the elliptic operator $\tilde{L} = L - c$.).

- (b) (1 point) Conclude that Lu = 0 on Ω and $u|_{\partial\Omega} = 0$ implies u = 0. (Hint: What is the corresponding minimum principle?)
- (c) (1 point) Show that if $Lu \ge 0$ and u assumes a *positive* maximum at some $x \in \Omega$ then u is constant in Ω .

Exercise 20

Let Ω be as above. For T > 0 set $Q = \Omega \times (0, T)$ and define $\partial' Q = \partial \Omega \times (0, T) \cup \Omega \times \{0\}$. Assume L is an elliptic operator on Ω with c = 0 and $u \in C^2(Q) \cap C^0(\overline{Q})$.

(a) (2 points) Show that if $\partial_t u - Lu < 0$ then the strong (parabolic) maximum principle holds in Q, i.e.

$$\sup_{Q} u = \sup_{\partial' Q} u > u(x,t) \qquad \text{for all } (x,t) \in Q.$$

(Hint: Choose $Q' = \Omega \times (0, T')$ for $T' \in (0, T)$ and argue as in the elliptic case with Q'. The same argument also excludes maximum points in $\Omega \times \{T'\}$. Conclude by letting $T' \to T$).

- (b) (1 point) Use the function v(x,t) := -t to show that the weak maximum principle holds for functions u satisfying $\partial_t u Lu \leq 0$ in Q, i.e. $\sup_Q u = \sup_{\partial' Q} u$.
- (c) (1 point) Conclude that $\partial_t u Lu = \partial_t v Lv$ and $u|_{\partial'Q} = v|_{\partial'Q}$ for functions $u, v \in C^2(Q) \cap C^0(\bar{Q})$ implies u = v in Q.
- (d) (4 points *) Assume $c = b^k = 0, k = 1, ..., n$, to show the strong parabolic maximum principle for the parabolic operator $\partial_t L$. Use functions of the form

$$v_{\alpha,y,t,R}(t,x) = e^{-\alpha \left(||x-y||^2 + |t-s|^2 \right)} - e^{-\alpha R^2}$$

Exercise 21

(2 points) Let $u \in C^1((0,1))$ show for $x, y \in (0,1)$ and $p \in (1,\infty)$ it holds

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} ||u'||_p.$$

Deadline 29.05.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

15.05.2017