Linear PDE

Exercise sheet 6

Exercise 22

(3 points) Let $p \in[1, n)$. Show that the following inequality

$$
\|u\|_{r} \leq C\|D u\|_{p}
$$

holds for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ from some C (not depending on u) if and only if $r=p^{*}=\frac{n p}{n-p}$.
(Hint: For one direction, check whether note that $\operatorname{supp} u \subset \subset \Omega$ for some Ω. For the other direction, use chain rule and change of variable applied to $u_{\lambda}(x)=u(\lambda x), \lambda>0$ and let $\lambda \rightarrow 0$ and resp. $\left.\lambda \rightarrow \infty\right)$.

Exercise 23

(3 points) Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x \cdot y>0,\|(x, y)\|<1\right\}=\Omega^{+} \dot{\cup} \Omega^{-} \dot{\cup}\{(0,0)\}$. Show that for any two constants $c_{1}, c_{2} \in \mathbb{R}$ the function

$$
u(x, y)= \begin{cases}c_{1} & x>0 \\ c_{2} & x<0\end{cases}
$$

is in $W^{1, p}(\Omega)$ for $p \in[1,2)$. (Hint: Construct functions $u_{\epsilon} \in C^{1}(\Omega)$ which are constant on $\Omega \backslash B_{\epsilon}(0,0)$ and whose partial derivatives are bounded by $\frac{C}{\epsilon}$.)
Remark: The goal of the exercise is to show that u is a $W^{1, p}$-limit of C^{1}-functions which are continuous and differentiable in the origin $(0,0)$. For that reason $(0,0)$ is assumed to be a point of Ω.

Reminder: The optional project is 12.06 .2017 as well.

