Linear PDE

Exercise sheet 7

Exercise 24

(3 points) Let $\alpha \in(0,1)$ and $B_{1}(\mathbf{0}) \subset \mathbb{R}^{n}$. Determine the range of p for which $u_{\alpha} \in W^{1, p}\left(B_{1}(\mathbf{0})\right.$ where

$$
u_{\alpha}(x)=\|x\|^{\alpha}
$$

(Hint: Recall that there is a constant $C=C(n, p)$ such that

$$
C^{-1} \max _{i=1}^{n}\left|x_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C \max _{i=1}^{n}\left|x_{i}\right| .
$$

Use polar coordinates to estimate $\left(\sum_{i=1}^{n}\left|\partial_{i} u_{\alpha}\right|^{p}\right)^{\frac{1}{p}}$ pointwise on $B_{1}(\mathbf{0}) \backslash\{\mathbf{0}\}$ from above and below and use cut-off functions to approximate u_{α} by C^{1}-functions.)

Exercise 25

(3 points) Let $s>0$ and $B_{1}(\mathbf{0}) \subset \mathbb{R}^{n}$. Determine the range of p for which $u_{s} \in W^{1, p}\left(B_{1}(\mathbf{0})\right.$) where

$$
u_{s}(x)=\frac{1}{\|x\|^{s}}
$$

$\left(2\right.$ points $\left.{ }^{*}\right)$ In combination of the previous exercise, determine ranges for k and p such that

$$
u_{\alpha} \in W^{k, p}\left(B_{1}(\mathbf{0})\right)
$$

Exercise 26

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, convex domain and define $\tilde{\Omega} \subset \mathbb{R}^{n} \times \mathbb{R}$ by

$$
\tilde{\Omega}=\left\{(x, t) \mid t \in(-1,1), \frac{x}{\sqrt{1-t^{2}}} \in \Omega\right\} .
$$

(a) (2 points) The domain $\tilde{\Omega}$ is convex and if the boundary of Ω is C^{k} then the boundary $\partial \tilde{\Omega}$ is C^{k} (away from $(0, \pm 1) \in \partial \tilde{\Omega}$).
(b) (2 points) There is a natural injective embedding i of $W^{1, p}(\Omega)$ into $W^{1, p}(\tilde{\Omega})$ such that for each elliptic operator $L: C^{2}(\Omega) \rightarrow C^{0}(\Omega)$ be an elliptic operator there is an elliptic operator \tilde{L} : $C^{2}(\tilde{\Omega}) \rightarrow C^{0}(\tilde{\Omega})$ with the same bounds on the constant such that whenever $L u=0$ then $\tilde{L} \tilde{u}=0$ where $\tilde{u}=i(u)$ is given by the embedding above.

Deadline 19.06.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

