

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

JNIVERSITÄ

TUBINGEN

Exercise sheet 7

12.06.2016

Exercise 24

(3 points) Let $\alpha \in (0,1)$ and $B_1(\mathbf{0}) \subset \mathbb{R}^n$. Determine the range of p for which $u_\alpha \in W^{1,p}(B_1(\mathbf{0}))$ where

$$u_{\alpha}(x) = \|x\|^{\alpha}.$$

(Hint: Recall that there is a constant C = C(n, p) such that

$$C^{-1} \max_{i=1}^{n} |x_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \le C \max_{i=1}^{n} |x_i|.$$

Use polar coordinates to estimate $(\sum_{i=1}^{n} |\partial_i u_{\alpha}|^p)^{\frac{1}{p}}$ pointwise on $B_1(\mathbf{0}) \setminus \{\mathbf{0}\}$ from above and below and use cut-off functions to approximate u_{α} by C^1 -functions.)

Exercise 25

(3 points) Let s > 0 and $B_1(\mathbf{0}) \subset \mathbb{R}^n$. Determine the range of p for which $u_s \in W^{1,p}(B_1(\mathbf{0}))$ where

$$u_s(x) = \frac{1}{\|x\|^s}.$$

(2 points *) In combination of the previous exercise, determine ranges for k and p such that

$$u_{\alpha} \in W^{k,p}(B_1(\mathbf{0})).$$

Exercise 26

Let $\Omega \subset \mathbb{R}^n$ be a bounded, convex domain and define $\tilde{\Omega} \subset \mathbb{R}^n \times \mathbb{R}$ by

$$\tilde{\Omega} = \{(x,t) \, | \, t \in (-1,1), \frac{x}{\sqrt{1-t^2}} \in \Omega \}.$$

- (a) (2 points) The domain $\tilde{\Omega}$ is convex and if the boundary of Ω is C^k then the boundary $\partial \tilde{\Omega}$ is C^k (away from $(0, \pm 1) \in \partial \tilde{\Omega}$).
- (b) (2 points) There is a natural injective embedding i of $W^{1,p}(\Omega)$ into $W^{1,p}(\tilde{\Omega})$ such that for each elliptic operator $L : C^2(\Omega) \to C^0(\Omega)$ be an elliptic operator there is an elliptic operator $\tilde{L} : C^2(\tilde{\Omega}) \to C^0(\tilde{\Omega})$ with the same bounds on the constant such that whenever Lu = 0 then $\tilde{L}\tilde{u} = 0$ where $\tilde{u} = i(u)$ is given by the embedding above.

Deadline 19.06.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.