Linear PDE

Exercise sheet 8

Exercise 27

(2 points) Let $T:\left(X,\|\cdot\|_{1}\right) \rightarrow\left(Y,\|\cdot\|_{2}\right)$ be a bounded linear map between two Banach spaces such that for some $c>0$ it holds

$$
c\|x\|_{1} \leq\|T x\|_{2}
$$

for all $x \in X$. Show that $T(X)$ is a closed subspace of Y. Furthermore, if Y is a Hilbert space then T is onto if and only if $T(X)^{\perp}=\{\mathbf{0}\}$.

Exercise 28

Let $(H,\langle\cdot\rangle$,$) be a Hilbert space and \alpha: H \rightarrow \mathbb{R}$ be a bounded linear map with $\alpha(v) \neq 0$ for some $v \in H$.
(a) (2 points) For all closed subspaces $X \leq H$ and $w \in H$ there are unique $w_{1} \in X$ and $w_{2} \in X^{\perp}$ such that

$$
w=w_{1}+w_{2}
$$

(Hint: Show that the nearest-point projection $p_{X}: H \rightarrow X$ is well-defined and $w-p_{X}(w) \in X^{\perp}$.)
(b) (1 point) Show that $H_{\alpha}=\left(\alpha^{-1}(0)\right)^{\perp}$ is one-dimensional
(Note: A space X is not one-dimensional if there are $v, w \in X$ such that for all $t, s \neq 0$ it holds $t v+s w \neq \mathbf{0}$).
(c) (2 point) Conclude that for a unique $v_{0} \in H$ it holds

$$
\alpha(w)=\left\langle v_{0}, w\right\rangle \quad \text { for all } w \in H
$$

(Hint: First show the claim for $w \in H_{\alpha}$, then use part (a)).

Exercise 29

(3 points) Assume L is an elliptic operator on Ω, and $b^{k}: \Omega \rightarrow \mathbb{R}, k=1, \ldots, n$, and $c: \Omega \rightarrow \mathbb{R}$ are bounded. Show that for some $C>0$ the bilinear function $B: W_{0}^{1,2}(\Omega) \times W_{0}^{1,2}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
B(u, v)=C \cdot B_{0}(u, v)+\int \sum_{k=1}^{n} b^{k} \partial_{k} u \cdot v+c \cdot u \cdot v d x
$$

is bilinear, bounded and coercive where

$$
B_{0}(u, v)=\int \sum_{i=1}^{n} \partial_{i} u \cdot \partial_{i} v d x
$$

Conclude that

$$
B_{L}(u, v)=\int \sum_{i, j=1}^{n} a^{i j} \partial_{i} u \cdot \partial_{j} v+\sum_{k=1}^{n} b^{k} \partial_{k} u \cdot v+c \cdot u \cdot v d x
$$

is bilinear, bounded and coercive if the lower ellipticity constant λ of L satisfies $\lambda \geq C$.
(Hint: Use Cauchy-Schwarz and Gagliardo-Nirenberg to estimate the integrals of $b^{k} \partial_{k} u \cdot v$ and $c \cdot u \cdot v$ from below.)

Deadline 25.06.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

