

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

JNIVERSITÄT

TÜBINGEN

Exercise sheet 8

Exercise 27

(2 points) Let $T: (X, \|\cdot\|_1) \to (Y, \|\cdot\|_2)$ be a bounded linear map between two Banach spaces such that for some c > 0 it holds

 $c \|x\|_1 \le \|Tx\|_2$

for all $x \in X$. Show that T(X) is a closed subspace of Y. Furthermore, if Y is a Hilbert space then T is onto if and only if $T(X)^{\perp} = \{\mathbf{0}\}$.

Exercise 28

Let $(H, \langle \cdot, \rangle)$ be a Hilbert space and $\alpha : H \to \mathbb{R}$ be a bounded linear map with $\alpha(v) \neq 0$ for some $v \in H$.

(a) (2 points) For all closed subspaces $X \leq H$ and $w \in H$ there are unique $w_1 \in X$ and $w_2 \in X^{\perp}$ such that

$$v = w_1 + w_2.$$

(Hint: Show that the nearest-point projection $p_X : H \to X$ is well-defined and $w - p_X(w) \in X^{\perp}$.)

- (b) (1 point) Show that $H_{\alpha} = (\alpha^{-1}(0))^{\perp}$ is one-dimensional (Note: A space X is *not* one-dimensional if there are $v, w \in X$ such that for all $t, s \neq 0$ it holds $tv + sw \neq \mathbf{0}$).
- (c) (2 point) Conclude that for a unique $v_0 \in H$ it holds

$$\alpha(w) = \langle v_0, w \rangle \quad \text{for all } w \in H.$$

(Hint: First show the claim for $w \in H_{\alpha}$, then use part (a)).

Exercise 29

(3 points) Assume L is an elliptic operator on Ω , and $b^k : \Omega \to \mathbb{R}$, k = 1, ..., n, and $c : \Omega \to \mathbb{R}$ are bounded. Show that for some C > 0 the bilinear function $B : W_0^{1,2}(\Omega) \times W_0^{1,2}(\Omega) \to \mathbb{R}$ defined by

$$B(u,v) = C \cdot B_0(u,v) + \int \sum_{k=1}^n b^k \partial_k u \cdot v + c \cdot u \cdot v dx$$

is bilinear, bounded and coercive where

$$B_0(u,v) = \int \sum_{i=1}^n \partial_i u \cdot \partial_i v dx.$$

Conclude that

$$B_L(u,v) = \int \sum_{i,j=1}^n a^{ij} \partial_i u \cdot \partial_j v + \sum_{k=1}^n b^k \partial_k u \cdot v + c \cdot u \cdot v dx$$

is bilinear, bounded and coercive if the lower ellipticity constant λ of L satisfies $\lambda \geq C$. (Hint: Use Cauchy–Schwarz and Gagliardo–Nirenberg to estimate the integrals of $b^k \partial_k u \cdot v$ and $c \cdot u \cdot v$ from below.)

Deadline 25.06.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

18.06.2016