

Faculty of Science

Department of Mathematics

Dr. Martin Kell Jason Ledwidge

Linear PDE

Summer semester 2017

EBERHARD KARLS

UNIVERSITÄT

TUBINGEN

Exercise sheet 9

Exercise 30

(4 points) Assume Ω is a bounded, connected and open domain in \mathbb{R}^n and $u \in L^p(\Omega)$ with $\operatorname{supp} u \subset \subset \Omega$. Show that $u \in W^{k,p}(\Omega)$ if and only if for all multi-indices I with |I| = k, u has weak derivatives $g_I \in L^p(\Omega)$. (Hint: Use mollification and Gagliardo-Nirenberg.)

Exercise 31

(2 points) Let $u \in W^{1,p}(\Omega)$ and $\Omega' \subset \Omega$ be a connected subdomain. Then for all $0 < h < d(\Omega', \partial\Omega)$ it holds $\|\partial_i^h u\|_{L^p(\Omega')} \leq \|\partial_i u\|_{L^p(\Omega)}$ where

$$\partial_i^h u(x) = \frac{u(x+he_i) - u(x)}{h}.$$

Exercise 32

(2 points) Observe the following fact: If $(w_n)_{n\in\mathbb{N}}$ is a bounded sequence in $L^p(\Omega)$ then there is a subsequence $(w_{n_k})_{k\in\mathbb{N}}$ and an element $w \in L^p(\Omega)$ such that for all bounded linear functions $\alpha : L^p(\Omega) \to \mathbb{R}$ it holds $\lim_{k\to\infty} \alpha(w_{n_k}) = \alpha(w)$.

Assume $u \in L^p(\Omega)$ and there is a constant K such that for all connected $\Omega' \subset \subset \Omega$, $0 < h < d(\Omega', \partial\Omega)$ and $i \in \{1, \ldots, n\}$ it holds $\|\partial_i^h u\|_{L^p(\Omega')} \leq K$. Use the observation to show that u has weak derivatives $g_i \in L^p(\Omega)$ with $\|g_i\|_{L^p(\Omega)} \leq K$. Conclude $u \in W^{1,p}(\Omega)$.

Exercise 33

(Running exercise) Let $(X, \|\cdot\|)$ be a Banach space with *r*-uniformly convex norm. We define the co-convex topology τ_{co} on X as the smallest topology such that every closed convex set $C \subset X$ is τ -closed, i.e.

 $\{U \subset X \mid X \setminus U \text{ is closed and convex}\}$

is a subbase for τ .

- (a) (2 point) If $U_i \subset X$, $i \in \mathbb{N}$, is such that $X \setminus U_i$ is convex and $\bigcup_{i \in \mathbb{N}} U_i \supset C$ for a bounded, closed and convex set C then there is a finite subset $J \subset \mathbb{N}$ such that $\bigcup_{i \in J} U_i \supset C$.
- (b) (3 points *) If $U_i \subset X$, $i \in I$, is such that $X \setminus U_i$ is convex and $C \subset \bigcup_{i \in I} U_i$ for a bounded, closed and convex set $C \subset X$ then there is a finite subset $J \subset I$ such that $C \subset \bigcup_{i \in J} U_i$. (Hint: Use (transfinite) induction and show that it ends after finitely many steps.) Remark: By the Alexander Subbase Theorem this implies that every closed bounded and convex set $C \subset X$ is τ -compact. In particular, any bounded sequence in X admits a τ -convergent
 - subsequence.
- (c) (2 points *) If $f: X \to \mathbb{R} \cup \{\infty\}$ is convex and lower semi-continuous w.r.t. norm topology then f is lower semi-continuous w.r.t. τ_{co} . In particular, any bounded linear functional $\alpha: X \to \mathbb{R}$ is continuous w.r.t. τ .

Deadline 03.07.2016 in before the lecture.

You reach the website of the lecture under https://tinyurl.com/UniTue-LinPDE.

26.06.2016