Optimal transport and non-branching geodesics

Martin Kell

Pisa, November 15th 2018

• Solve for good μ and arbitrary ν the following

$$\inf_{\nu=T_*\mu} \int d^p(x,T(x)) d\mu(x)$$

• When is the solution unique?

$$\inf_{\pi \in \Pi(\mu,\nu)} \int d^p(x,y) d\pi(x,y)$$

- For p = 1 almost never true.
- For $p \in (1,\infty)$ depends on the geometry and on μ .
- If true then
 - the optimal coupling is unique
 - Monge = Kantorovich.

$$\inf_{\pi \in \Pi(\mu,\nu)} \int d^p(x,y) d\pi(x,y)$$

- For p = 1 almost never true.
- For $p \in (1,\infty)$ depends on the geometry and on μ .
- If true then
 - the optimal coupling is unique
 - Monge = Kantorovich.

$$\inf_{\pi \in \Pi(\mu,\nu)} \int d^p(x,y) d\pi(x,y)$$

- For p = 1 almost never true.
- For $p \in (1,\infty)$ depends on the geometry and on μ .
- If true then
 - the optimal coupling is unique
 - Monge = Kantorovich.

$$\inf_{\pi \in \Pi(\mu,\nu)} \int d^p(x,y) d\pi(x,y)$$

- For p = 1 almost never true.
- For $p \in (1,\infty)$ depends on the geometry and on μ .
- If true then
 - the optimal coupling is unique
 - Monge = Kantorovich.

BLACKBOARD

- Assumption: (M,d,\mathbf{m}) a complete geodesic measure space

Definition (non-branching)

A geodesic space (M,d) is non-branching if for all geodesics $\gamma, \eta : [0,1] \to M$ with $\gamma_0 = \eta_0$ and $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Equivalently: If m is a midpoint of (x, y) and (x, z) then y = z.

- Assumption: (M,d,\mathbf{m}) a complete geodesic measure space

Definition (non-branching)

A geodesic space (M,d) is non-branching if for all geodesics $\gamma, \eta : [0,1] \to M$ with $\gamma_0 = \eta_0$ and $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Equivalently: If m is a midpoint of (x, y) and (x, z) then y = z.

- Assumption: (M,d,\mathbf{m}) a complete geodesic measure space

Definition (non-branching)

A geodesic space (M,d) is non-branching if for all geodesics $\gamma, \eta: [0,1] \to M$ with $\gamma_0 = \eta_0$ and $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Equivalently: If m is a midpoint of (x, y) and (x, z) then y = z.

Lemma (no intermediate overlap)

A geodesic space is non-branching if the following holds: Whenever for two geodesics γ and η satisfy

$$d^{p}(\gamma_{0},\gamma_{1}) + d^{p}(\eta_{0},\eta_{1}) \le d^{p}(\gamma_{0},\eta_{1}) + d^{p}(\eta_{0},\gamma_{1})$$

and $\gamma_t = \eta_t$ for some $t \in (0,1)$ then $\gamma \equiv \eta$.

- Riemannian/Finsler manifolds (geodesic = "ODE solution")
- Alexandrov spaces (comparison condition)
- Busemann *G*-spaces (unique continuation property)
- $CAT(\kappa) \oplus RCD(K, N)$ -space [Kapovich-Ketterer '17] \implies works also for $MCP_{loc}(K, N)$ -spaces that are (locally) Busemann convex
- subRiemannian Heisenberg(-type) groups [Ambrosio-Rigot '04]
- subRiemannian Engel group [Ardentov-Sachkov '11,'15]
- Open: Ricci limits, RCD-spaces, Carnot groups

• Theorems using Rademacher Theorem

- in \mathbb{R}^n [Brenier '91, Gangbo-McCann '96]
- Riemannian manifolds [McCann '01, Gigli '11]
- Finsler manifolds [Villani '09, Ohta '09]
- Heisenberg groups [Ambrosio-Rigot '04]
- nice subRiemannian manifolds [Figalli-Riffort '10]
- Alexandrov spaces [Bertrand '08/'15, Schultz-Rajala '18]
- Anyone missing?

- Theorems using Rademacher Theorem
 - in \mathbb{R}^n [Brenier '91, Gangbo-McCann '96]
 - Riemannian manifolds [McCann '01, Gigli '11]
 - Finsler manifolds [Villani '09, Ohta '09]
 - Heisenberg groups [Ambrosio-Rigot '04]
 - nice subRiemannian manifolds [Figalli-Riffort '10]
 - Alexandrov spaces [Bertrand '08/'15, Schultz-Rajala '18]

• Anyone missing?

- Theorems using Rademacher Theorem
 - in \mathbb{R}^n [Brenier '91, Gangbo-McCann '96]
 - Riemannian manifolds [McCann '01, Gigli '11]
 - Finsler manifolds [Villani '09, Ohta '09]
 - Heisenberg groups [Ambrosio-Rigot '04]
 - nice subRiemannian manifolds [Figalli-Riffort '10]
 - Alexandrov spaces [Bertrand '08/'15, Schultz-Rajala '18]
- Anyone missing?

Some history of L^p -Monge-Kantorovich, p > 1

- Theorems using optimal transport and non-branching
 - non-branching CD(K, N)-spaces [Gigli '12]
 - strongly non-branching doubling spaces with interpolation property [Ambrosio-Rajala '14]
 - non-branching spaces with very weak MCP [Cavalletti-Huesmann '15]
- using weaker essentially non-branching (e.n.b.) condition
 - strong $CD(K,\infty)$ -spaces [Rajala-Sturm '14]
 - RCD(K,N)-spaces [Gigli-Rajala-Sturm '16]
 - e.n.b. MCP(K, N)-spaces [Cavalletti-Mondino '17]
 - e.n.b. spaces with very weak MCP [K. '17]

Some history of L^p -Monge-Kantorovich, p > 1

- Theorems using optimal transport and non-branching
 - non-branching CD(K, N)-spaces [Gigli '12]
 - strongly non-branching doubling spaces with interpolation property [Ambrosio-Rajala '14]
 - non-branching spaces with very weak MCP [Cavalletti-Huesmann '15]
- using weaker essentially non-branching (e.n.b.) condition
 - strong $CD(K, \infty)$ -spaces [Rajala-Sturm '14]
 - RCD(K, N)-spaces [Gigli-Rajala-Sturm '16]
 - e.n.b. MCP(K, N)-spaces [Cavalletti-Mondino '17]
 - e.n.b. spaces with very weak MCP [K. '17]

Notation

• $\Gamma \subset M \times M$

$$\Gamma_t := \{\gamma_t \,|\, \gamma \in \operatorname{Geo}_{[0,1]}(M,d), (\gamma_0,\gamma_1) \in \Gamma\}$$

•
$$A \subset M$$
 and $x \in M$

$$A_{t,x} = (A \times \{x\})_t$$

Remark

In the following fix a $p \in (1,\infty)$ so that optimal $= d^p$ -optimal, cylically monotone $= d^p$ -cylically monotone.

Definition ([Cavalletti-Huesmann '15])

A metric measure space is qualitatively non-degenerate if for all R>0 there is a function $f_R:(0,1)\to(0,\infty)$ with $C_R=\limsup_{t\to 0}f_R(t)>\frac{1}{2}$ such that whenever $\{x\},A\subset B_R(x_0)$ then

$$\mathbf{m}(A_{t,x}) \ge f_R(t)\mathbf{m}(A).$$

Remark

Note that $2C_R > 1$.

Definition (Good Transport Behavior)

A metric measure space (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$ if for all $\mu \in \mathcal{P}_p^{ac}(M)$ and all $\nu \in \mathcal{P}_p(M)$ every optimal coupling π is induced by a transport map T, i.e. $\pi = (\mathrm{id} \times T)_* \mu$.

Theorem ([Cavalletti-Huesmann '15])

Assume (M, d, \mathbf{m}) is qualitatively non-degenerate and non-branching. Then (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$ for all $p \in (1, \infty)$.

Definition (Good Transport Behavior)

A metric measure space (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$ if for all $\mu \in \mathcal{P}_p^{ac}(M)$ and all $\nu \in \mathcal{P}_p(M)$ every optimal coupling π is induced by a transport map T, i.e. $\pi = (\mathrm{id} \times T)_* \mu$.

Theorem ([Cavalletti-Huesmann '15])

Assume (M, d, \mathbf{m}) is qualitatively non-degenerate and non-branching. Then (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$ for all $p \in (1, \infty)$.

Definition (Good Transport Behavior)

A metric measure space (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$ if for all $\mu \in \mathcal{P}_p^{ac}(M)$ and all $\nu \in \mathcal{P}_p(M)$ every optimal coupling π is induced by a transport map T, i.e. $\pi = (\mathrm{id} \times T)_* \mu$.

Theorem ([Cavalletti-Huesmann '15])

Assume (M, d, \mathbf{m}) is qualitatively non-degenerate and non-branching. Then (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$ for all $p \in (1, \infty)$.

• Choose some optimal coupling π and note

 $\operatorname{supp} \pi = A_1 \times \{x_1\} \dot{\cup} A_2 \times \{x_2\} \dot{\cup} A \times \{x_1, x_2\}.$

- Observation:
 - π is induced by a transport map iff $\mathbf{m}(A) = 0$.
 - by non-branching for $t \in (0,1)$

 $A_{t,x_1} \cap A_{t,x_2} = \emptyset.$

• by qualitative non-degeneracy (and A is compact)

$$\mathbf{m}(A) \ge \limsup_{t \to 0} \mathbf{m}(A_{t,x_1} \cup A_{t,x_2})$$

=
$$\limsup_{t \to 0} \mathbf{m}(A_{t,x_1}) + \mathbf{m}(A_{t,x_2})$$

=
$$2\limsup_{t \to 0} f(t)\mathbf{m}(A) = 2C_R \mathbf{m}(A)$$

 $\bullet\,$ Choose some optimal coupling π and note

$$\operatorname{supp} \pi = A_1 \times \{x_1\} \dot{\cup} A_2 \times \{x_2\} \dot{\cup} A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $\mathbf{m}(A) = 0$.
 - by non-branching for $t \in (0,1)$

 $A_{t,x_1} \cap A_{t,x_2} = \emptyset.$

• by qualitative non-degeneracy (and A is compact)

$$\mathbf{m}(A) \ge \limsup_{t \to 0} \mathbf{m}(A_{t,x_1} \cup A_{t,x_2})$$

=
$$\limsup_{t \to 0} \mathbf{m}(A_{t,x_1}) + \mathbf{m}(A_{t,x_2})$$

=
$$2\limsup_{t \to 0} f(t)\mathbf{m}(A) = 2C_R \mathbf{m}(A)$$

• Choose some optimal coupling π and note

$$\operatorname{supp} \pi = A_1 \times \{x_1\} \dot{\cup} A_2 \times \{x_2\} \dot{\cup} A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $\mathbf{m}(A) = 0$.
 - by non-branching for $t \in (0,1)$

 $A_{t,x_1} \cap A_{t,x_2} = \varnothing.$

• by qualitative non-degeneracy (and A is compact)

$$\mathbf{m}(A) \ge \limsup_{t \to 0} \mathbf{m}(A_{t,x_1} \cup A_{t,x_2})$$

=
$$\limsup_{t \to 0} \mathbf{m}(A_{t,x_1}) + \mathbf{m}(A_{t,x_2})$$

=
$$2\limsup_{t \to 0} f(t)\mathbf{m}(A) = 2C_R \mathbf{m}(A)$$

• Choose some optimal coupling π and note

$$\operatorname{supp} \pi = A_1 \times \{x_1\} \dot{\cup} A_2 \times \{x_2\} \dot{\cup} A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $\mathbf{m}(A) = 0$.
 - by non-branching for $t \in (0,1)$

 $A_{t,x_1} \cap A_{t,x_2} = \emptyset.$

• by qualitative non-degeneracy (and A is compact)

$$\mathbf{m}(A) \ge \limsup_{t \to 0} \mathbf{m}(A_{t,x_1} \cup A_{t,x_2})$$

=
$$\limsup_{t \to 0} \mathbf{m}(A_{t,x_1}) + \mathbf{m}(A_{t,x_2})$$

=
$$2\limsup_{t \to 0} f(t)\mathbf{m}(A) = 2C_R \mathbf{m}(A)$$

• Choose some optimal coupling π and note

$$\operatorname{supp} \pi = A_1 \times \{x_1\} \dot{\cup} A_2 \times \{x_2\} \dot{\cup} A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $\mathbf{m}(A) = 0$.
 - by non-branching for $t \in (0,1)$

$$A_{t,x_1} \cap A_{t,x_2} = \varnothing.$$

• by qualitative non-degeneracy (and A is compact)

$$\mathbf{m}(A) \ge \limsup_{t \to 0} \mathbf{m}(A_{t,x_1} \cup A_{t,x_2})$$

=
$$\limsup_{t \to 0} \mathbf{m}(A_{t,x_1}) + \mathbf{m}(A_{t,x_2})$$

=
$$2\limsup_{t \to 0} f(t)\mathbf{m}(A) = 2C_R\mathbf{m}(A)$$

• Choose some optimal coupling π and note

$$\operatorname{supp} \pi = A_1 \times \{x_1\} \dot{\cup} A_2 \times \{x_2\} \dot{\cup} A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $\mathbf{m}(A) = 0$.
 - by non-branching for $t \in (0,1)$

$$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$

• by qualitative non-degeneracy (and A is compact)

$$\mathbf{m}(A) \ge \limsup_{t \to 0} \mathbf{m}(A_{t,x_1} \cup A_{t,x_2})$$

=
$$\limsup_{t \to 0} \mathbf{m}(A_{t,x_1}) + \mathbf{m}(A_{t,x_2})$$

=
$$2\limsup_{t \to 0} f(t)\mathbf{m}(A) = 2C_R \mathbf{m}(A)$$

• Choose some optimal coupling π and note

$$\operatorname{supp} \pi = A_1 \times \{x_1\} \dot{\cup} A_2 \times \{x_2\} \dot{\cup} A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $\mathbf{m}(A) = 0$.
 - by non-branching for $t \in (0,1)$

$$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$

• by qualitative non-degeneracy (and A is compact)

$$\mathbf{m}(A) \ge \limsup_{t \to 0} \mathbf{m}(A_{t,x_1} \cup A_{t,x_2})$$

=
$$\limsup_{t \to 0} \mathbf{m}(A_{t,x_1}) + \mathbf{m}(A_{t,x_2})$$

=
$$2\limsup_{t \to 0} f(t)\mathbf{m}(A) = 2C_R \mathbf{m}(A)$$

$$\operatorname{supp} \pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \dot{\cup} \bigcup_{i< j}^{n} A_{ij} \times \{x_i, x_j\}.$$

• By previous slide $\mathbf{m}(A_{ij}) = 0$.

Hence

$$T(x) = \begin{cases} x_i & x \in A_i \\ x & \text{otherwise} \end{cases}$$

$$\operatorname{supp} \pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \dot{\cup} \bigcup_{i< j}^{n} A_{ij} \times \{x_i, x_j\}.$$

• By previous slide $\mathbf{m}(A_{ij}) = 0$.

Hence

$$T(x) = \begin{cases} x_i & x \in A_i \\ x & \text{otherwise} \end{cases}$$

$$\operatorname{supp} \pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \dot{\cup} \bigcup_{i< j}^{n} A_{ij} \times \{x_i, x_j\}.$$

• By previous slide $\mathbf{m}(A_{ij}) = 0$.

Hence

$$T(x) = \begin{cases} x_i & x \in A_i \\ x & \text{otherwise} \end{cases}$$

$$\operatorname{supp} \pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \dot{\cup} \bigcup_{i< j}^{n} A_{ij} \times \{x_i, x_j\}.$$

- By previous slide $\mathbf{m}(A_{ij}) = 0$.
- Hence

$$T(x) = \begin{cases} x_i & x \in A_i \\ x & \text{otherwise} \end{cases}$$

Observation

• For distinct $x, y \in M$ and compact $A \subset M$

$$A_{=} = \{ z \in M \, | \, d(x, z) = d(y, z) \}$$
$$A_{\neq} = A \backslash A_{=}.$$

- If $A\times\{x,y\}$ is cyclically monotone then even without non-branching

$$(A_{\neq})_{t,x} \cap (A_{\neq})_{t,y} = \varnothing.$$

• Hence if

$$\forall x \neq y : \mathbf{m}(\{z \in M \,|\, d(x,z) = d(y,z)\} = 0$$

then any optimal coupling between $\mu \ll {\bf m}$ and ν discrete is induced by a transport map.

• This holds for **any** normed space and measure assigning zero mass to hyperplanes.

Observation

• For distinct $x,y\in M$ and compact $A\subset M$

$$A_{=} = \{ z \in M \, | \, d(x, z) = d(y, z) \}$$
$$A_{\neq} = A \backslash A_{=}.$$

- If $A\times\{x,y\}$ is cyclically monotone then even without non-branching

$$(A_{\neq})_{t,x} \cap (A_{\neq})_{t,y} = \varnothing.$$

• Hence if

$$\forall x \neq y : \mathbf{m}(\{z \in M \,|\, d(x,z) = d(y,z)\} = 0$$

then any optimal coupling between $\mu \ll {\bf m}$ and ν discrete is induced by a transport map.

• This holds for **any** normed space and measure assigning zero mass to hyperplanes.

Observation

• For distinct $x,y\in M$ and compact $A\subset M$

$$\begin{split} A_{=} &= \{z \in M \,|\, d(x,z) = d(y,z)\}\\ A_{\neq} &= A \backslash A_{=}. \end{split}$$

- If $A\times\{x,y\}$ is cyclically monotone then even without non-branching

$$(A_{\neq})_{t,x} \cap (A_{\neq})_{t,y} = \varnothing.$$

• Hence if

$$\forall x \neq y : \mathbf{m}(\{z \in M \mid d(x,z) = d(y,z)\} = 0$$

then any optimal coupling between $\mu \ll {\bf m}$ and ν discrete is induced by a transport map.

• This holds for **any** normed space and measure assigning zero mass to hyperplanes.
Observation

• For distinct $x,y\in M$ and compact $A\subset M$

$$\begin{split} A_{=} &= \{z \in M \,|\, d(x,z) = d(y,z)\}\\ A_{\neq} &= A \backslash A_{=}. \end{split}$$

- If $A\times\{x,y\}$ is cyclically monotone then even without non-branching

$$(A_{\neq})_{t,x} \cap (A_{\neq})_{t,y} = \varnothing.$$

Hence if

$$\forall x \neq y : \mathbf{m}(\{z \in M \, | \, d(x,z) = d(y,z)\} = 0$$

then any optimal coupling between $\mu \ll \mathbf{m}$ and ν discrete is induced by a transport map.

• This holds for **any** normed space and measure assigning zero mass to hyperplanes.

Observation

• For distinct $x,y\in M$ and compact $A\subset M$

$$\begin{split} A_{=} &= \{z \in M \,|\, d(x,z) = d(y,z)\}\\ A_{\neq} &= A \backslash A_{=}. \end{split}$$

- If $A\times\{x,y\}$ is cyclically monotone then even without non-branching

$$(A_{\neq})_{t,x} \cap (A_{\neq})_{t,y} = \varnothing.$$

Hence if

$$\forall x \neq y: \mathbf{m}(\{z \in M \, | \, d(x,z) = d(y,z)\} = 0$$

then any optimal coupling between $\mu \ll \mathbf{m}$ and ν discrete is induced by a transport map.

• This holds for **any** normed space and measure assigning zero mass to hyperplanes.

Theorem (Selection dichotomy, see e.g. [K. '17])

If some optimal coupling π is **not** induced by a transport map then there is a compact set $K \subset \operatorname{supp}(p_1)_*\pi$ with $\pi(K \times M) > 0$ and two continuous maps $T_1, T_2 : M \to M$ with $T_1(K) \cap T_2(K) = \emptyset$ such that

 $\Gamma^{(1)} \cup \Gamma^{(2)}$

is cyclically monotone where $\Gamma^{(i)} = \operatorname{graph}_K T_i$.

Lemma

If (M,d) is non-branching then

$$\Gamma_t^{(1)} \cap \Gamma_t^{(2)} = \emptyset$$

and

$$\mathbf{m}(K) \ge \limsup_{t \to 0} \left[\mathbf{m}(\Gamma_t^{(1)}) + \mathbf{m}(\Gamma_t^{(2)}) \right]$$

Theorem (Selection dichotomy, see e.g. [K. '17])

If some optimal coupling π is **not** induced by a transport map then there is a compact set $K \subset \operatorname{supp}(p_1)_*\pi$ with $\pi(K \times M) > 0$ and two continuous maps $T_1, T_2 : M \to M$ with $T_1(K) \cap T_2(K) = \emptyset$ such that

 $\Gamma^{(1)} \cup \Gamma^{(2)}$

is cyclically monotone where $\Gamma^{(i)} = \operatorname{graph}_K T_i$.

Lemma

If (M,d) is non-branching then

$$\Gamma_t^{(1)} \cap \Gamma_t^{(2)} = \varnothing$$

and

$$\mathbf{m}(K) \geq \limsup_{t \to 0} \left[\mathbf{m}(\Gamma_t^{(1)}) + \mathbf{m}(\Gamma_t^{(2)}) \right]$$

Theorem (Selection dichotomy, see e.g. [K. '17])

If some optimal coupling π is **not** induced by a transport map then there is a compact set $K \subset \operatorname{supp}(p_1)_*\pi$ with $\pi(K \times M) > 0$ and two continuous maps $T_1, T_2 : M \to M$ with $T_1(K) \cap T_2(K) = \emptyset$ such that

 $\Gamma^{(1)} \cup \Gamma^{(2)}$

is cyclically monotone where $\Gamma^{(i)} = \operatorname{graph}_K T_i$.

Lemma

If (M,d) is non-branching then

$$\Gamma_t^{(1)} \cap \Gamma_t^{(2)} = \emptyset$$

and

$$\mathbf{m}(K) \geq \limsup_{t \to 0} \left[\mathbf{m}(\Gamma_t^{(1)}) + \mathbf{m}(\Gamma_t^{(2)}) \right]$$

Lemma

If (M,d,\mathbf{m}) is non-branching and qualitatively non-degenerate then

 $\mathbf{m}(\Gamma_t^{(i)}) \ge f(t)\mathbf{m}(K).$

Idea of proof.

Let $\nu_n \to (T_i)_* \mu|_K$ with ν_n discrete then eventually

 $\Gamma_t^{(i),n} \stackrel{!}{\subset} (\Gamma_t^{(i)})_{\epsilon}$

so that

$$\mathbf{m}(\Gamma_t^{(i)}) \ge \limsup_{n \to 0} \mathbf{m}(\Gamma_t^{(i),n}) \ge f(t)\mathbf{m}(K).$$

Lemma

If (M, d, \mathbf{m}) is non-branching and qualitatively non-degenerate then

 $\mathbf{m}(\Gamma_t^{(i)}) \ge f(t)\mathbf{m}(K).$

Idea of proof.

Let $\nu_n \to (T_i)_* \mu|_K$ with ν_n discrete then eventually

$$\Gamma_t^{(i),n} \stackrel{!}{\subset} (\Gamma_t^{(i)})_{\epsilon}$$

so that

$$\mathbf{m}(\Gamma_t^{(i)}) \geq \limsup_{n \to 0} \mathbf{m}(\Gamma_t^{(i),n}) \geq f(t)\mathbf{m}(K).$$

• If the claim was wrong then using we arrive at the following contradiction

$$\mathbf{m}(K) \ge \limsup_{t \to 0} \mathbf{m}(\Gamma_t^{(1)}) + \mathbf{m}(\Gamma_t^{(2)})$$
$$\ge 2\limsup_{t \to 0} f(t)\mathbf{m}(K) = 2C_R\mathbf{m}(K).$$

• Thus, any optimal transport between $\mu \ll \mathbf{m}$ and arbitrary ν is induced by a transport map.

• If the claim was wrong then using we arrive at the following contradiction

$$\mathbf{m}(K) \ge \limsup_{t \to 0} \mathbf{m}(\Gamma_t^{(1)}) + \mathbf{m}(\Gamma_t^{(2)})$$
$$\ge 2\limsup_{t \to 0} f(t)\mathbf{m}(K) = 2C_R\mathbf{m}(K).$$

• Thus, any optimal transport between $\mu \ll \mathbf{m}$ and arbitrary ν is induced by a transport map.

 $\mathbf{m}(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0$

$$\mathbf{m}(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0$$

$$\mathbf{m}(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0$$

• qualitative non-degeneracy

$$\mathbf{m}(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0$$

• qualitative non-degeneracy \Longrightarrow not an optimal transport property

• For simplicity let $M=\mathbb{R}^n$

Lemma

If $\Gamma \subset \{x_n < 0\} \times \{x_n = 0\}$ is *d*-cyclically monotone then for all distinct geodesics γ, η with

 $(\gamma_0,\gamma_1),(\eta_0,\eta_1)\in\Gamma$

it holds $\gamma_t \neq \eta_t$.

Corollary

Assume $\operatorname{supp} \mu \times \operatorname{supp} \nu \subset \{x_n < 0\} \times \{x_n = 0\}$ then any *d*-optimal coupling is induced by a transport map.

Remark

Works for non-bran., qual. non-deg. spaces if ν is supported in a level set of a dual solution.

• For simplicity let $M = \mathbb{R}^n$

Lemma

If $\Gamma \subset \{x_n < 0\} \times \{x_n = 0\}$ is d-cyclically monotone then for all distinct geodesics γ, η with

 $(\gamma_0,\gamma_1),(\eta_0,\eta_1)\in\Gamma$

it holds $\gamma_t \neq \eta_t$.

Corollary

Assume $\operatorname{supp} \mu \times \operatorname{supp} \nu \subset \{x_n < 0\} \times \{x_n = 0\}$ then any *d*-optimal coupling is induced by a transport map.

Remark

Works for non-bran., qual. non-deg. spaces if ν is supported in a level set of a dual solution.

• For simplicity let $M = \mathbb{R}^n$

Lemma

If $\Gamma \subset \{x_n < 0\} \times \{x_n = 0\}$ is d-cyclically monotone then for all distinct geodesics γ, η with

 $(\gamma_0,\gamma_1),(\eta_0,\eta_1)\in\Gamma$

it holds $\gamma_t \neq \eta_t$.

Corollary

Assume $\operatorname{supp} \mu \times \operatorname{supp} \nu \subset \{x_n < 0\} \times \{x_n = 0\}$ then any *d*-optimal coupling is induced by a transport map.

Remark

Works for non-bran., qual. non-deg. spaces if ν is supported in a level set of a dual solution.

Lorentzian setting [K.-Suhr '18]

• Lagrangian for $p \in (0,1]$

$$\mathcal{L}_p(v) = \begin{cases} -(-g(v,v))^{\frac{p}{2}} & v \in \bar{\mathcal{C}} \\ \infty & \text{otherwise} \end{cases}$$

induces cost function $c_p: M \times M \to (-\infty, 0] \cup \{\infty\}$

- For $p \in (0,1)$, geodesics connecting $(x,y) \in c_p^{-1}((-\infty,0))$ are non-branching.
- For p=1 and hyperbolic spacetimes, introduce smooth time function $\tau:M\to\mathbb{R}$ with

 $\forall v \in \bar{\mathcal{C}} : d\tau(v) > 0$

and then all causal geodesics can be parametrized *time-affinely* and geodesics with endpoints in

$$\{\tau < a\} \times \{\tau = a\}$$

are non-branching.

Lorentzian setting [K.-Suhr '18]

• Lagrangian for $p \in (0,1]$

$$\mathcal{L}_p(v) = \begin{cases} -(-g(v,v))^{\frac{p}{2}} & v \in \bar{\mathcal{C}} \\ \infty & \text{otherwise} \end{cases}$$

induces cost function $c_p: M \times M \to (-\infty, 0] \cup \{\infty\}$

- For $p\in (0,1),$ geodesics connecting $(x,y)\in c_p^{-1}((-\infty,0))$ are non-branching.
- For p=1 and hyperbolic spacetimes, introduce smooth time function $\tau:M\to\mathbb{R}$ with

 $\forall v \in \bar{\mathcal{C}} : d\tau(v) > 0$

and then all causal geodesics can be parametrized *time-affinely* and geodesics with endpoints in

$$\{\tau < a\} \times \{\tau = a\}$$

are non-branching.

• Lagrangian for $p \in (0,1]$

$$\mathcal{L}_p(v) = \begin{cases} -(-g(v,v))^{\frac{p}{2}} & v \in \bar{\mathcal{C}} \\ \infty & \text{otherwise} \end{cases}$$

induces cost function $c_p: M \times M \to (-\infty, 0] \cup \{\infty\}$

- For $p\in(0,1),$ geodesics connecting $(x,y)\in c_p^{-1}((-\infty,0))$ are non-branching.
- For p=1 and hyperbolic spacetimes, introduce smooth time function $\tau:M\to \mathbb{R}$ with

$$\forall v \in \bar{\mathcal{C}} : d\tau(v) > 0$$

and then all causal geodesics can be parametrized *time-affinely* and geodesics with endpoints in

$$\{\tau < a\} \times \{\tau = a\}$$

are non-branching.

• Assume (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$

- for every $\mu_0 \ll {\bf m}$ and μ_1 the optimal coupling is unique and induced by a transport map
- for every $\mu_0 \ll {f m}$ and μ_1 the geodesic $t\mapsto \mu_t$ is unique
- if, in addition, ${\bf m}$ is qual. non-deg. then $\mu_t \ll {\bf m}$

- Assume (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$
 - for every $\mu_0 \ll {\bf m}$ and μ_1 the optimal coupling is unique and induced by a transport map
 - for every $\mu_0 \ll \mathbf{m}$ and μ_1 the geodesic $t \mapsto \mu_t$ is unique
 - if, in addition, ${\bf m}$ is qual. non-deg. then $\mu_t \ll {\bf m}$

- Assume (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$
 - for every $\mu_0 \ll {\bf m}$ and μ_1 the optimal coupling is unique and induced by a transport map
 - for every $\mu_0 \ll {f m}$ and μ_1 the geodesic $t\mapsto \mu_t$ is unique
 - if, in addition, ${f m}$ is qual. non-deg. then $\mu_t \ll {f m}$

- Assume (M, d, \mathbf{m}) has good transport behavior $(GTB)_p$
 - for every $\mu_0 \ll {\bf m}$ and μ_1 the optimal coupling is unique and induced by a transport map
 - for every $\mu_0 \ll {f m}$ and μ_1 the geodesic $t\mapsto \mu_t$ is unique
 - if, in addition, ${\bf m}$ is qual. non-deg. then $\mu_t \ll {\bf m}$

• Let $T = [0,1]_1 \cup [0,1]_3 \cup [0,1]_3$ be the tripod glued at 0.

• (T, d, \mathbf{m}) is a CAT(0)-space, but will never have good transport behavior.

- Let $T = [0,1]_1 \cup [0,1]_3 \cup [0,1]_3$ be the tripod glued at 0.
- (T, d, \mathbf{m}) is a CAT(0)-space, but will never have good transport behavior.

• A subset of geodesics $\mathcal{G} \subset \operatorname{Geo}_{[0,1]}(M,d)$ is called non-branching if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ or $\gamma_1 = \eta_1$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Definition ([Rajala-Sturm '14])

The space (M, d, \mathbf{m}) is essentially non-branching $(ENB)_p$ if for every optimal dynamical coupling σ with $(e_0)_*\sigma, (e_1)_*\sigma \ll \mathbf{m}$ is concentrated on a non-branching set.

May alter condition: For each t₁,...,t_n ∈ (0,1), σ is concentrated on a cyclically monotone set Γ such that for all distinct geodesics γ and η with endpoints in Γ it holds γ_{t_i} ≠ η_{t_i}.

• A subset of geodesics $\mathcal{G} \subset \operatorname{Geo}_{[0,1]}(M,d)$ is called non-branching if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ or $\gamma_1 = \eta_1$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Definition ([Rajala-Sturm '14])

The space (M, d, \mathbf{m}) is essentially non-branching $(ENB)_p$ if for every optimal dynamical coupling σ with $(e_0)_*\sigma, (e_1)_*\sigma \ll \mathbf{m}$ is concentrated on a non-branching set.

• May alter condition: For each $t_1, \ldots, t_n \in (0,1)$, σ is concentrated on a cyclically monotone set Γ such that for all distinct geodesics γ and η with endpoints in Γ it holds $\gamma_{t_i} \neq \eta_{t_i}$.

• A subset of geodesics $\mathcal{G} \subset \operatorname{Geo}_{[0,1]}(M,d)$ is called non-branching if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ or $\gamma_1 = \eta_1$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Definition ([Rajala-Sturm '14])

The space (M, d, \mathbf{m}) is essentially non-branching $(ENB)_p$ if for every optimal dynamical coupling σ with $(e_0)_*\sigma, (e_1)_*\sigma \ll \mathbf{m}$ is concentrated on a non-branching set.

• May alter condition: For each $t_1, \ldots, t_n \in (0, 1)$, σ is concentrated on a cyclically monotone set Γ such that for all distinct geodesics γ and η with endpoints in Γ it holds $\gamma_{t_i} \neq \eta_{t_i}$.

• A subset of geodesics $\mathcal{G} \subset \operatorname{Geo}_{[0,1]}(M,d)$ is called non-branching to the left if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Theorem ([K. '17])

If (M, d, \mathbf{m}) has good transport behavior then any dynamical coupling σ with $(e_0)_*\sigma \ll \mathbf{m}$ is concentrated on a set that is non-branching to the left. In particular, (M, d, \mathbf{m}) is essentially non-branching $(ENB)_p$.

• A subset of geodesics $\mathcal{G} \subset \operatorname{Geo}_{[0,1]}(M,d)$ is called non-branching to the left if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Theorem ([K. '17])

If (M, d, \mathbf{m}) has good transport behavior then any dynamical coupling σ with $(e_0)_*\sigma \ll \mathbf{m}$ is concentrated on a set that is non-branching to the left. In particular, (M, d, \mathbf{m}) is essentially non-branching $(ENB)_p$.

- Choose three mutually singular measures $\mathbf{m}_1,\mathbf{m}_2$ and \mathbf{m}_3 on [0,1].
- For the tripod (T,d), regard them as measures on $[0,1_i]$ and set ${\bf m}={\bf m}_1+{\bf m}_2+{\bf m}_3$
- Observations:
 - (T, d, \mathbf{m}) is essentially non-branching
 - all optimal couplings π with $(p_i)_*\pi\ll {\bf m}$ are induced by transport map

- Choose three mutually singular measures $\mathbf{m}_1,\mathbf{m}_2$ and \mathbf{m}_3 on [0,1].
- For the tripod (T,d), regard them as measures on $[0,1_i]$ and set ${\bf m}={\bf m}_1+{\bf m}_2+{\bf m}_3$
- Observations:
 - (T, d, \mathbf{m}) is essentially non-branching
 - all optimal couplings π with $(p_i)_*\pi\ll {\bf m}$ are induced by transport map

Theorem ([K. '17])

If (M,d,\mathbf{m}) is essentially non-branching $(ENB)_p$ and qualitatively non-degenerate then it has good transport behavior $(GTB)_p$.

Idea of the proof

- As $\nu \not\ll \mathbf{m}$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with $(e_{\epsilon})_*\sigma, (e_{1-\epsilon})_*\sigma \ll \mathbf{m}$ with

$$\mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}} \ll (e_{\epsilon})_* \sigma \ll \mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}}$$

for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})_* \sigma(\Gamma) = 1$.

Essentially non-branching implies

$$\mathbf{m}(\Gamma_{\epsilon}^{(1)}\cap\Gamma_{\epsilon}^{(2)})=0$$

when $\Gamma^{(1)}$ is given via the Selection Dichotomy.

• A proof a la Cavalletti-Huesmann gives the result.

Idea of the proof

- As $\nu \not\ll \mathbf{m}$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with $(e_{\epsilon})_*\sigma, (e_{1-\epsilon})_*\sigma \ll \mathbf{m}$ with

$$\mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}} \ll (e_{\epsilon})_* \sigma \ll \mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}}$$

for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})_* \sigma(\Gamma) = 1$.

• Essentially non-branching implies

$$\mathbf{m}(\Gamma_{\epsilon}^{(1)} \cap \Gamma_{\epsilon}^{(2)}) = 0$$

when $\Gamma^{(1)}$ is given via the Selection Dichotomy.

• A proof a la Cavalletti-Huesmann gives the result.

Idea of the proof

- As $\nu \not\ll \mathbf{m}$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with $(e_\epsilon)_*\sigma, (e_{1-\epsilon})_*\sigma \ll {\bf m}$ with

$$\mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}} \ll (e_{\epsilon})_* \sigma \ll \mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}}$$

for a cyclically monotone set Γ with $(e_0,e_{1-\epsilon})_*\sigma(\Gamma)=1.$

Essentially non-branching implies

 $\mathbf{m}(\Gamma_{\epsilon}^{(1)} \cap \Gamma_{\epsilon}^{(2)}) = 0$

when $\Gamma^{(1)} \text{is given via the Selection Dichotomy.}$

• A proof a la Cavalletti-Huesmann gives the result.

Idea of the proof

- As $\nu \not\ll \mathbf{m}$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with $(e_\epsilon)_*\sigma, (e_{1-\epsilon})_*\sigma \ll {\bf m}$ with

$$\mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}} \ll (e_{\epsilon})_* \sigma \ll \mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}}$$

for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})_* \sigma(\Gamma) = 1$.

Essentially non-branching implies

$$\mathbf{m}(\Gamma_{\epsilon}^{(1)}\cap\Gamma_{\epsilon}^{(2)})=0$$

when $\Gamma^{(1)} \text{is given via the Selection Dichotomy.}$

• A proof a la Cavalletti-Huesmann gives the result.

Idea of the proof

- As $\nu \not\ll \mathbf{m}$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with $(e_\epsilon)_*\sigma, (e_{1-\epsilon})_*\sigma \ll {\bf m}$ with

$$\mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}} \ll (e_{\epsilon})_* \sigma \ll \mathbf{m}\big|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}}$$

for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})_* \sigma(\Gamma) = 1$.

Essentially non-branching implies

$$\mathbf{m}(\Gamma_{\epsilon}^{(1)}\cap\Gamma_{\epsilon}^{(2)})=0$$

when $\Gamma^{(1)} \text{is given via the Selection Dichotomy.}$

• A proof a la Cavalletti-Huesmann gives the result.

- Assume (M,d,\mathbf{m}) essentially non-branching and qualitatively non-degenerate
- Let $\mu_0 = f_0 \mathbf{m}$ and μ_1 arbitrary
- Conclusion:
 - (uniqueness) unique optimal dynamical coupling σ
 - (good transport behavior)

$$(e_0, e_1)_* \sigma = (\operatorname{id} \times T_1)_* \mu_0$$

3 (strong interpolation property)

$$(e_t)_*\sigma = f_t \mathbf{m}$$

(strong bounded density property)

$$f_t(\gamma_t) \le \frac{1}{f_R(t)} f_0(\gamma_0).$$

Theorem ([K. '17])

Assume (M, d, \mathbf{m}_1) and (M, d, \mathbf{m}_2) are both essentially non-branching $(ENB)_p$ and qualitatively non-degenerate then \mathbf{m}_1 and \mathbf{m}_2 are mutually absolutely continuous.

Corollary

For i = 1, 2 let (M, d, \mathbf{m}_i) be $\operatorname{RCD}(K_i, N_i)$ -spaces with $N_i < \infty$. Then \mathbf{m}_1 and \mathbf{m}_2 are mutually absolutely continuous.

Theorem ([K. '17])

Assume (M, d, \mathbf{m}_1) and (M, d, \mathbf{m}_2) are both essentially non-branching $(ENB)_p$ and qualitatively non-degenerate then \mathbf{m}_1 and \mathbf{m}_2 are mutually absolutely continuous.

Corollary

For i = 1, 2 let (M, d, \mathbf{m}_i) be $\operatorname{RCD}(K_i, N_i)$ -spaces with $N_i < \infty$. Then \mathbf{m}_1 and \mathbf{m}_2 are mutually absolutely continuous.

Theorem ([K. '17])

Assume (M, d, \mathbf{m}_1) and (M, d, \mathbf{m}_2) are both essentially non-branching $(ENB)_p$ and qualitatively non-degenerate then \mathbf{m}_1 and \mathbf{m}_2 are mutually absolutely continuous.

Corollary

For i = 1, 2 let (M, d, \mathbf{m}_i) be $\operatorname{RCD}(K_i, N_i)$ -spaces with $N_i < \infty$. Then \mathbf{m}_1 and \mathbf{m}_2 are mutually absolutely continuous.

- Decompose $\mathbf{m}_2 = f\mathbf{m}_1 + \mathbf{m}_2^s$
- Assume, by contradiction, $\mathbf{m}_2^s \neq 0$.
- Observation: We must have $f \neq 0$ by strong interpolation property
- The following claim implies gives a contradiction

• Decompose $\mathbf{m}_2 = f\mathbf{m}_1 + \mathbf{m}_2^s$

- Assume, by contradiction, $\mathbf{m}_2^s \neq 0$.
- Observation: We must have $f \neq 0$ by strong interpolation property
- The following claim implies gives a contradiction

Claim

- Decompose $\mathbf{m}_2 = f\mathbf{m}_1 + \mathbf{m}_2^s$
- Assume, by contradiction, $\mathbf{m}_2^s \neq 0$.
- Observation: We must have $f \neq 0$ by strong interpolation property
- The following claim implies gives a contradiction

- Decompose $\mathbf{m}_2 = f\mathbf{m}_1 + \mathbf{m}_2^s$
- Assume, by contradiction, $\mathbf{m}_2^s \neq 0$.
- Observation: We must have $f \neq 0$ by strong interpolation property
- The following claim implies gives a contradiction

- Decompose $\mathbf{m}_2 = f\mathbf{m}_1 + \mathbf{m}_2^s$
- Assume, by contradiction, $\mathbf{m}_2^s \neq 0$.
- Observation: We must have $f \neq 0$ by strong interpolation property
- The following claim implies gives a contradiction

• Note if $\mathbf{m}_1(A_{t,x}) = \mathbf{m}_1(A) = 0$ and then

$\mathbf{m}_2^s(A_{t,x}) = \mathbf{m}_2(A_{t,x}) \ge f_R(t)\mathbf{m}_2(A) = f_R(t)\mathbf{m}_2^s(A).$

• Observation: Since $\mathbf{m}_2(A_{t,x}) > 0$ for all $t \in (0,1]$, it is possible to show that for \mathbf{m}_2 -a.e. $x \in A$ there is a unique geodesic $\gamma^{(x)}$ such that

$$x \in \gamma^{(x)}((0,1))$$

Lemma

There is $K \subset A$ with $\mathbf{m}_2(K) > 0$ and $t \mapsto \mu_t$ geodesic with $\mu_1 \ll \mathbf{m}_2$, $\mu_{t_0} = \frac{1}{\mathbf{m}_2(K)} \mathbf{m}_2|_K$ and $\mu_1 = \delta_x$.

• Note if $\mathbf{m}_1(A_{t,x}) = \mathbf{m}_1(A) = 0$ and then

$$\mathbf{m}_{2}^{s}(A_{t,x}) = \mathbf{m}_{2}(A_{t,x}) \ge f_{R}(t)\mathbf{m}_{2}(A) = f_{R}(t)\mathbf{m}_{2}^{s}(A).$$

• Observation: Since $\mathbf{m}_2(A_{t,x}) > 0$ for all $t \in (0,1]$, it is possible to show that for \mathbf{m}_2 -a.e. $x \in A$ there is a unique geodesic $\gamma^{(x)}$ such that

$$x \in \gamma^{(x)}((0,1))$$

Lemma

There is $K \subset A$ with $\mathbf{m}_2(K) > 0$ and $t \mapsto \mu_t$ geodesic with $\mu_1 \ll \mathbf{m}_2$, $\mu_{t_0} = \frac{1}{\mathbf{m}_2(K)} \mathbf{m}_2|_K$ and $\mu_1 = \delta_x$.

• Note if $\mathbf{m}_1(A_{t,x}) = \mathbf{m}_1(A) = 0$ and then

$$\mathbf{m}_{2}^{s}(A_{t,x}) = \mathbf{m}_{2}(A_{t,x}) \ge f_{R}(t)\mathbf{m}_{2}(A) = f_{R}(t)\mathbf{m}_{2}^{s}(A).$$

• Observation: Since $\mathbf{m}_2(A_{t,x}) > 0$ for all $t \in (0,1]$, it is possible to show that for \mathbf{m}_2 -a.e. $x \in A$ there is a unique geodesic $\gamma^{(x)}$ such that

$$x \in \gamma^{(x)}((0,1))$$

Lemma

There is $K \subset A$ with $\mathbf{m}_2(K) > 0$ and $t \mapsto \mu_t$ geodesic with $\mu_1 \ll \mathbf{m}_2$, $\mu_{t_0} = \frac{1}{\mathbf{m}_2(K)} \mathbf{m}_2|_K$ and $\mu_1 = \delta_x$.

• Note if $\mathbf{m}_1(A_{t,x}) = \mathbf{m}_1(A) = 0$ and then

$$\mathbf{m}_{2}^{s}(A_{t,x}) = \mathbf{m}_{2}(A_{t,x}) \ge f_{R}(t)\mathbf{m}_{2}(A) = f_{R}(t)\mathbf{m}_{2}^{s}(A).$$

• Observation: Since $\mathbf{m}_2(A_{t,x}) > 0$ for all $t \in (0,1]$, it is possible to show that for \mathbf{m}_2 -a.e. $x \in A$ there is a unique geodesic $\gamma^{(x)}$ such that

$$x \in \gamma^{(x)}((0,1))$$

Lemma

There is $K \subset A$ with $\mathbf{m}_2(K) > 0$ and $t \mapsto \mu_t$ geodesic with $\mu_1 \ll \mathbf{m}_2$, $\mu_{t_0} = \frac{1}{\mathbf{m}_2(K)} \mathbf{m}_2 \big|_K$ and $\mu_1 = \delta_x$.

- Assume $\mathbf{m}_s^s
 eq 0$ and choose $\mu_0 = rac{1}{\mathbf{m}_2^s(K)} \mathbf{m}_2^s \big|_K$ and $\mu_1 \ll \mathbf{m}_1$
- By strong intersection property

$$\mu_t \ll \mathbf{m}_1, \mu_t \ll \mathbf{m}_2$$

hence $\mu_t \perp \mathbf{m}_2^s$

• By bounded density property for $\mu_t = f_t \mathbf{m}_2$

$$\|f_t\|_{\infty} \le \frac{1}{f_R(t)\mathbf{m}_2^s(K)}$$

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17]) If $\mu = \frac{1}{\mathbf{m}(K)}\mathbf{m}|_{K}$ and $\mu_{n} = f_{n}\mathbf{m}$ with $W_{p}(\mu_{n},\mu) \rightarrow 0$ and $\|f_{n}\|_{\infty} \leq C$ then $\mu \not\perp \mu_{n}$ for all sufficiently large n.

• Assume $\mathbf{m}_s^s \neq 0$ and choose $\mu_0 = \frac{1}{\mathbf{m}_2^s(K)} \mathbf{m}_2^s \big|_K$ and $\mu_1 \ll \mathbf{m}_1$

• By strong intersection property

$$\mu_t \ll \mathbf{m}_1, \mu_t \ll \mathbf{m}_2$$

hence $\mu_t \perp \mathbf{m}_2^s$

• By bounded density property for $\mu_t = f_t \mathbf{m}_2$

$$\|f_t\|_{\infty} \le \frac{1}{f_R(t)\mathbf{m}_2^s(K)}$$

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17]) If $\mu = \frac{1}{\mathbf{m}(K)}\mathbf{m}|_{K}$ and $\mu_{n} = f_{n}\mathbf{m}$ with $W_{p}(\mu_{n},\mu) \rightarrow 0$ and $\|f_{n}\|_{\infty} \leq C$ then $\mu \not\perp \mu_{n}$ for all sufficiently large n.

- Assume $\mathbf{m}_s^s \neq 0$ and choose $\mu_0 = \frac{1}{\mathbf{m}_2^s(K)} \mathbf{m}_2^s \big|_K$ and $\mu_1 \ll \mathbf{m}_1$
- By strong intersection property

$$\mu_t \ll \mathbf{m}_1, \mu_t \ll \mathbf{m}_2$$

hence $\mu_t \perp \mathbf{m}_2^s$

• By bounded density property for $\mu_t = f_t \mathbf{m}_2$

$$\|f_t\|_{\infty} \le \frac{1}{f_R(t)\mathbf{m}_2^s(K)}$$

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17]) If $\mu = \frac{1}{\mathbf{m}(K)}\mathbf{m}|_{K}$ and $\mu_{n} = f_{n}\mathbf{m}$ with $W_{p}(\mu_{n},\mu) \rightarrow 0$ and $\|f_{n}\|_{\infty} \leq C$ then $\mu \not \perp \mu_{n}$ for all sufficiently large n.

- Assume $\mathbf{m}_s^s \neq 0$ and choose $\mu_0 = \frac{1}{\mathbf{m}_2^s(K)} \mathbf{m}_2^s \big|_K$ and $\mu_1 \ll \mathbf{m}_1$
- By strong intersection property

$$\mu_t \ll \mathbf{m}_1, \mu_t \ll \mathbf{m}_2$$

hence $\mu_t \perp \mathbf{m}_2^s$

• By bounded density property for $\mu_t = f_t \mathbf{m}_2$

$$\|f_t\|_{\infty} \le \frac{1}{f_R(t)\mathbf{m}_2^s(K)}$$

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17]) If $\mu = \frac{1}{\mathbf{m}(K)}\mathbf{m}|_{K}$ and $\mu_{n} = f_{n}\mathbf{m}$ with $W_{p}(\mu_{n},\mu) \rightarrow 0$ and $\|f_{n}\|_{\infty} \leq C$ then $\mu \not \perp \mu_{n}$ for all sufficiently large n.

- Assume $\mathbf{m}_s^s \neq 0$ and choose $\mu_0 = \frac{1}{\mathbf{m}_2^s(K)} \mathbf{m}_2^s \big|_K$ and $\mu_1 \ll \mathbf{m}_1$
- By strong intersection property

$$\mu_t \ll \mathbf{m}_1, \mu_t \ll \mathbf{m}_2$$

hence $\mu_t \perp \mathbf{m}_2^s$

• By bounded density property for $\mu_t = f_t \mathbf{m}_2$

$$\|f_t\|_{\infty} \le \frac{1}{f_R(t)\mathbf{m}_2^s(K)}$$

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17]) If $\mu = \frac{1}{\mathbf{m}(K)}\mathbf{m}|_{K}$ and $\mu_{n} = f_{n}\mathbf{m}$ with $W_{p}(\mu_{n},\mu) \rightarrow 0$ and $\|f_{n}\|_{\infty} \leq C$ then $\mu \not \perp \mu_{n}$ for all sufficiently large n. Thank you for your attention