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Lp-Monge problem

• Solve for good µ and arbitrary ν the following

inf
ν=T∗µ

∫
dp(x,T (x))dµ(x)

• When is the solution unique?
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Lp-Monge-Kantorovich problem

• Show that the minimum of

inf
π∈Π(µ,ν)

∫
dp(x,y)dπ(x,y)

is supported on a graph of measurable map.

• For p= 1 almost never true.
• For p ∈ (1,∞) depends on the geometry and on µ.
• If true then

• the optimal coupling is unique
• Monge = Kantorovich.
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Dependence on µ and the geometry of
geodesics

BLACKBOARD
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Non-branching geodesics

• Assumption: (M,d,m) a complete geodesic measure space

Definition (non-branching)
A geodesic space (M,d) is non-branching if for all geodesics
γ,η : [0,1]→M with γ0 = η0 and γt = ηt for some t ∈ (0,1) it
holds γt = ηt for all t ∈ [0,1].

Equivalently:
If m is a midpoint of (x,y) and (x,z) then y = z.
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Non-branching and optimal transport

Lemma (no intermediate overlap)
A geodesic space is non-branching if the following holds:
Whenever for two geodesics γ and η satisfy

dp(γ0,γ1) +dp(η0,η1)≤ dp(γ0,η1) +dp(η0,γ1)

and γt = ηt for some t ∈ (0,1) then γ ≡ η.
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Examples of non-branching space

• Riemannian/Finsler manifolds (geodesic = “ODE solution”)
• Alexandrov spaces (comparison condition)
• Busemann G-spaces (unique continuation property)
• CAT(κ)⊕RCD(K,N)-space [Kapovich-Ketterer ’17]

=⇒ works also for MCPloc(K,N)-spaces that are (locally)
Busemann convex

• subRiemannian Heisenberg(-type) groups [Ambrosio-Rigot ’04]
• subRiemannian Engel group [Ardentov-Sachkov ’11,’15]
• Open: Ricci limits, RCD-spaces, Carnot groups
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Some history of Lp-Monge-Kantorovich, p > 1

• Theorems using Rademacher Theorem

• in Rn [Brenier ’91, Gangbo-McCann ’96]
• Riemannian manifolds [McCann ’01, Gigli ’11]
• Finsler manifolds [Villani ’09, Ohta ’09]
• Heisenberg groups [Ambrosio-Rigot ’04]
• nice subRiemannian manifolds [Figalli-Riffort ’10]
• Alexandrov spaces [Bertrand ’08/’15, Schultz-Rajala ’18]

• Anyone missing?
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Some history of Lp-Monge-Kantorovich, p > 1

• Theorems using optimal transport and non-branching
• non-branching CD(K,N)-spaces [Gigli ’12]
• strongly non-branching doubling spaces with interpolation

property [Ambrosio-Rajala ’14]
• non-branching spaces with very weak MCP

[Cavalletti-Huesmann ’15]

• using weaker essentially non-branching (e.n.b.) condition
• strong CD(K,∞)-spaces [Rajala-Sturm ’14]
• RCD(K,N)-spaces [Gigli-Rajala-Sturm ’16]
• e.n.b. MCP(K,N)-spaces [Cavalletti-Mondino ’17]
• e.n.b. spaces with very weak MCP [K. ’17]
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Notation

• Γ⊂M ×M

Γt := {γt |γ ∈Geo[0,1](M,d),(γ0,γ1) ∈ Γ}

• A⊂M and x ∈M

At,x = (A×{x})t

Remark
In the following fix a p ∈ (1,∞) so that optimal = dp-optimal,
cylically monotone = dp-cylically monotone.
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Very weak MCP condition

Definition ([Cavalletti-Huesmann ’15])
A metric measure space is qualitatively non-degenerate if for all
R> 0 there is a function fR : (0,1)→ (0,∞) with
CR = limsupt→0 fR(t)> 1

2 such that whenever {x},A⊂BR(x0)
then

m(At,x)≥ fR(t)m(A).

Remark
Note that 2CR > 1.
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Optimal transport maps

Definition (Good Transport Behavior)
A metric measure space (M,d,m) has good transport behavior
(GTB)p if for all µ ∈ Pacp (M) and all ν ∈ Pp(M) every optimal
coupling π is induced by a transport map T , i.e. π = (id×T )∗µ.

Theorem ([Cavalletti-Huesmann ’15])
Assume (M,d,m) is qualitatively non-degenerate and
non-branching. Then (M,d,m) has good transport behavior
(GTB)p for all p ∈ (1,∞).
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Proof for ν = (1−λ)δx1 +λδx2, x1 6= x2

• Choose some optimal coupling π and note

suppπ =A1×{x1}∪̇A2×{x2}∪̇A×{x1,x2}.

• Observation:
• π is induced by a transport map iff m(A) = 0.
• by non-branching for t ∈ (0,1)

At,x1 ∩At,x2 = ∅.

• by qualitative non-degeneracy (and A is compact)

m(A)≥ limsup
t→0

m(At,x1 ∪At,x2)

= limsup
t→0

m(At,x1) +m(At,x2)

= 2limsup
t→0

f(t)m(A) = 2CRm(A).

• Conclusion: m(A) = 0 and π is induced by a transport map.
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Proof for ν = ∑n
i=1λiδxi

• Choose some optimal coupling π then

suppπ =
n⋃
i=1

Ai×{xi}∪̇
n⋃
i<j

Aij×{xi,xj}.

• By previous slide m(Aij) = 0.
• Hence

T (x) =
{
xi x ∈Ai
x otherwise

is a transport map.
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Observation

• For distinct x,y ∈M and compact A⊂M

A= = {z ∈M |d(x,z) = d(y,z)}
A 6= =A\A=.

• If A×{x,y} is cyclically monotone then even without
non-branching

(A 6=)t,x∩ (A 6=)t,y = ∅.

• Hence if

∀x 6= y : m({z ∈M |d(x,z) = d(y,z)}= 0

then any optimal coupling between µ�m and ν discrete is
induced by a transport map.

• This holds for any normed space and measure assigning zero
mass to hyperplanes.
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Proof for general ν

Theorem (Selection dichotomy, see e.g. [K. ’17])
If some optimal coupling π is not induced by a transport map then
there is a compact set K ⊂ supp(p1)∗π with π(K×M)> 0 and
two continuous maps T1,T2 :M →M with T1(K)∩T2(K) = ∅
such that

Γ(1)∪Γ(2)

is cyclically monotone where Γ(i) = graphK Ti.

Lemma
If (M,d) is non-branching then

Γ(1)
t ∩Γ(2)

t = ∅

and
m(K)≥ limsup

t→0

[
m(Γ(1)

t ) +m(Γ(2)
t )
]
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Uniform approximation (simplified for presentation)

Lemma
If (M,d,m) is non-branching and qualitatively non-degenerate then

m(Γ(i)
t )≥ f(t)m(K).

Idea of proof.
Let νn→ (Ti)∗µ

∣∣
K

with νn discrete then eventually

Γ(i),n
t

!
⊂ (Γ(i)

t )ε

so that
m(Γ(i)

t )≥ limsup
n→0

m(Γ(i),n
t )≥ f(t)m(K).
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Conclusion

• If the claim was wrong then using we arrive at the following
contradiction

m(K)≥ limsup
t→0

m(Γ(1)
t ) +m(Γ(2)

t )

≥ 2limsup
t→0

f(t)m(K) = 2CRm(K).

• Thus, any optimal transport between µ�m and arbitrary ν
is induced by a transport map.
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Ingredients of the proof

• (weak) non-branching property

m(Γ(1)
t ∩Γ(2)

t ) = 0
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Ingredients of the proof

• (weak) non-branching property

m(Γ(1)
t ∩Γ(2)

t ) = 0

• qualitative non-degeneracy =⇒ not an optimal transport
property
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Partial extension to p= 1, see e.g. [K.-Suhr 18]

• For simplicity let M = Rn

Lemma
If Γ⊂ {xn < 0}×{xn = 0} is d-cyclically monotone then for all
distinct geodesics γ,η with

(γ0,γ1),(η0,η1) ∈ Γ

it holds γt 6= ηt.

Corollary
Assume suppµ× suppν ⊂ {xn < 0}×{xn = 0} then any
d-optimal coupling is induced by a transport map.

Remark
Works for non-bran., qual. non-deg. spaces if ν is supported in a
level set of a dual solution.
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Lorentzian setting [K.-Suhr ’18]

• Lagrangian for p ∈ (0,1]

Lp(v) =
{
−(−g(v,v))

p
2 v ∈ C̄

∞ otherwise

induces cost function cp :M ×M → (−∞,0]∪{∞}
• For p ∈ (0,1), geodesics connecting (x,y) ∈ c−1

p ((−∞,0)) are
non-branching.

• For p= 1 and hyperbolic spacetimes, introduce smooth time
function τ :M → R with

∀v ∈ C̄ : dτ(v)> 0

and then all causal geodesics can be parametrized
time-affinely and geodesics with endpoints in

{τ < a}×{τ = a}

are non-branching.
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Spaces with good transport behavior (I)

• Assume (M,d,m) has good transport behavior (GTB)p

• for every µ0�m and µ1 the optimal coupling is unique and
induced by a transport map

• for every µ0�m and µ1 the geodesic t 7→ µt is unique

• if, in addition, m is qual. non-deg. then µt�m
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Obstructions to good transport behavior (I)

• Let T = [0,1]1∪ [0,1]3∪ [0,1]3 be the tripod glued at 0.

• (T,d,m) is a CAT (0)-space, but will never have good
transport behavior.
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Essentially non-branching (I)

• A subset of geodesics G ⊂Geo[0,1](M,d) is called
non-branching if for all γ,η ∈ G with γ0 = η0 or γ1 = η1 it
holds whenever γt = ηt for some t ∈ (0,1) it holds γt = ηt for
all t ∈ [0,1].

Definition ([Rajala-Sturm ’14])
The space (M,d,m) is essentially non-branching (ENB)p if for
every optimal dynamical coupling σ with (e0)∗σ,(e1)∗σ�m is
concentrated on a non-branching set.

• May alter condition: For each t1, . . . , tn ∈ (0,1), σ is
concentrated on a cyclically monotone set Γ such that for all
distinct geodesics γ and η with endpoints in Γ it holds
γti 6= ηti .
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Spaces with good transport behavior (II)

• A subset of geodesics G ⊂Geo[0,1](M,d) is called
non-branching to the left if for all γ,η ∈ G with γ0 = η0 it
holds whenever γt = ηt for some t ∈ (0,1) it holds γt = ηt for
all t ∈ [0,1].

Theorem ([K. ’17])
If (M,d,m) has good transport behavior then any dynamical
coupling σ with (e0)∗σ�m is concentrated on a set that is
non-branching to the left. In particular, (M,d,m) is essentially
non-branching (ENB)p.
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Obstructions to good transport behavior (II)

• Choose three mutually singular measures m1,m2 and m3 on
[0,1].

• For the tripod (T,d), regard them as measures on [0,1i] and
set m = m1 +m2 +m3

• Observations:
• (T,d,m) is essentially non-branching
• all optimal couplings π with (pi)∗π�m are induced by

transport map
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Essentially non-branching (II)

Theorem ([K. ’17])
If (M,d,m) is essentially non-branching (ENB)p and qualitatively
non-degenerate then it has good transport behavior (GTB)p.
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Idea of the proof

• As ν 6�m essentially non-branching cannot be directly used
• Construct dynamical optimal coupling σ with

(eε)∗σ,(e1−ε)∗σ�m with

m
∣∣
Γ ε

1−ε
� (eε)∗σ�m

∣∣
Γ ε

1−ε

for a cyclically monotone set Γ with (e0,e1−ε)∗σ(Γ) = 1.
• Essentially non-branching implies

m(Γ(1)
ε ∩Γ(2)

ε ) = 0

when Γ(1)is given via the Selection Dichotomy.
• A proof a la Cavalletti–Huesmann gives the result.
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Intermediate summary

• Assume (M,d,m) essentially non-branching and qualitatively
non-degenerate

• Let µ0 = f0m and µ1 arbitrary
• Conclusion:

1 (uniqueness) unique optimal dynamical coupling σ
2 (good transport behavior)

(e0,e1)∗σ = (id×T1)∗µ0

3 (strong interpolation property)

(et)∗σ = ftm

4 (strong bounded density property)

ft(γt)≤
1

fR(t)f0(γ0).
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Application to Measure Rigidity

Theorem ([K. ’17])
Assume (M,d,m1) and (M,d,m2) are both essentially
non-branching (ENB)p and qualitatively non-degenerate then m1
and m2 are mutually absolutely continuous.

Corollary
For i= 1,2 let (M,d,mi) be RCD(Ki,Ni)-spaces with Ni <∞.
Then m1 and m2 are mutually absolutely continuous.
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1st Proof of the Measure Rigidity (I)

• Decompose m2 = fm1 +ms
2

• Assume, by contradiction, ms
2 6= 0.

• Observation: We must have f 6= 0 by strong interpolation
property

• The following claim implies gives a contradiction

Claim
ms

2 is both essentially non-branching and qualitatively
non-degenerate
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1st Proof (II) - proof of the claim

• Note if m1(At,x) = m1(A) = 0 and then

ms
2(At,x) = m2(At,x)≥ fR(t)m2(A) = fR(t)ms

2(A).

• Observation: Since m2(At,x)> 0 for all t ∈ (0,1], it is possible
to show that for m2-a.e. x ∈A there is a unique geodesic
γ(x) such that

x ∈ γ(x)((0,1))

Lemma
There is K ⊂⊂A with m2(K)> 0 and t 7→ µt geodesic with
µ1�m2, µt0 = 1

m2(K)m2
∣∣
K

and µ1 = δx.

• Lemma implies if µt0⊥m1 then µt⊥m1 for all t ∈ [0,1) which
yields the claim.
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2nd Proof of the Measure Rigidity

• Assume ms
s 6= 0 and choose µ0 = 1

ms
2(K)ms

2
∣∣
K

and µ1�m1

• By strong intersection property

µt�m1,µt�m2

hence µt⊥ms
2

• By bounded density property for µt = ftm2

‖ft‖∞ ≤
1

fR(t)ms
2(K)

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH ’14, K. ’17])
If µ= 1

m(K)m
∣∣
K

and µn = fnm with Wp(µn,µ)→ 0 and
‖fn‖∞ ≤ C then µ 6 ⊥µn for all sufficiently large n.
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Thank you for your attention


