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LP-Monge problem

e Solve for good 1 and arbitrary v the following
inf [ dP(z,T(x))dp(zx)

v=Txp

e When is the solution unique?
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LP-Monge-Kantorovich problem

e Show that the minimum of

inf dP(x,y)dm(x,
ot (z,y)dn(z,y)

is supported on a graph of measurable map.
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e Show that the minimum of

inf dP(x,y)dm(x,
ot (z,y)dn(z,y)

is supported on a graph of measurable map.

e For p=1 almost never true.

e For p € (1,00) depends on the geometry and on p.
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LP-Monge-Kantorovich problem

Show that the minimum of

inf /dp 2, y)dn(z,
ot (z,y)dr(z,y)

is supported on a graph of measurable map.

For p =1 almost never true.

For p € (1,00) depends on the geometry and on .
If true then

o the optimal coupling is unique
e Monge = Kantorovich.
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Non-branching geodesics

e Assumption: (M,d,m) a complete geodesic measure space
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Non-branching geodesics

e Assumption: (M,d,m) a complete geodesic measure space

Definition (non-branching)

A geodesic space (M,d) is non-branching if for all geodesics
v,m:[0,1] = M with 79 =19 and ~, =, for some ¢t € (0,1) it
holds ~y; = n; for all ¢ € [0,1].
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Non-branching geodesics

e Assumption: (M,d,m) a complete geodesic measure space

Definition (non-branching)

A geodesic space (M,d) is non-branching if for all geodesics
v,m:[0,1] = M with 79 =19 and ~, =, for some ¢t € (0,1) it
holds ~y; = n; for all ¢ € [0,1].

Equivalently:
If m is a midpoint of (x,y) and (x,z) then y = z.
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Non-branching and optimal transport

Lemma (no intermediate overlap)

A geodesic space is non-branching if the following holds:
Whenever for two geodesics vy and n satisfy

d?(v0,v1) +dP(mo,m) < dP(yo0,m) +dP(10,71)

and ~, = for some t € (0,1) then v =n.
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Examples of non-branching space

¢ Riemannian/Finsler manifolds (geodesic = “ODE solution™)
e Alexandrov spaces (comparison condition)
e Busemann G-spaces (unique continuation property)
e CAT (k) ® RCD(K,N)-space [Kapovich-Ketterer '17]
= works also for MCP,,.(K, N)-spaces that are (locally)
Busemann convex

e subRiemannian Heisenberg(-type) groups [Ambrosio-Rigot '04]
e subRiemannian Engel group [Ardentov-Sachkov '11,'15]
e Open: Ricci limits, RCD-spaces, Carnot groups
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Some history of .”-Monge-Kantorovich, p > 1

e Theorems using Rademacher Theorem
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Some history of .”-Monge-Kantorovich, p > 1 %

e Theorems using Rademacher Theorem

in R™ [Brenier '91, Gangbo-McCann '96]

Riemannian manifolds [McCann '01, Gigli '11]

Finsler manifolds [Villani '09, Ohta '09]

Heisenberg groups [Ambrosio-Rigot '04]

nice subRiemannian manifolds [Figalli-Riffort '10]
Alexandrov spaces [Bertrand '08/'15, Schultz-Rajala '18]
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Some history of .”-Monge-Kantorovich, p > 1 %

e Theorems using Rademacher Theorem

in R™ [Brenier '91, Gangbo-McCann '96]

Riemannian manifolds [McCann '01, Gigli '11]

Finsler manifolds [Villani '09, Ohta '09]

Heisenberg groups [Ambrosio-Rigot '04]

nice subRiemannian manifolds [Figalli-Riffort '10]
Alexandrov spaces [Bertrand '08/'15, Schultz-Rajala '18]

e Anyone missing?
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Some history of .”-Monge-Kantorovich, p > 1

e Theorems using optimal transport and non-branching
e non-branching CD(K, N)-spaces [Gigli '12]
e strongly non-branching doubling spaces with interpolation
property [Ambrosio-Rajala '14]
e non-branching spaces with very weak MCP
[Cavalletti-Huesmann '15]
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Some history of .”-Monge-Kantorovich, p > 1

e Theorems using optimal transport and non-branching
e non-branching CD(K, N)-spaces [Gigli '12]
e strongly non-branching doubling spaces with interpolation
property [Ambrosio-Rajala '14]
e non-branching spaces with very weak MCP
[Cavalletti-Huesmann '15]

e using weaker essentially non-branching (e.n.b.) condition
e strong CD(K,00)-spaces [Rajala-Sturm '14]
o RCD(K, N)-spaces [Gigli-Rajala-Sturm '16]
e e.n.b. MCP(K, N)-spaces [Cavalletti-Mondino '17]
e e.n.b. spaces with very weak MCP [K. '17]
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Notation

e 'CMxM

Ly={vnlve Geo[O,l](M7 d),(v0,71) €'}

e ACMandxzc M

App = (Ax{z})

Remark

In the following fix a p € (1,00) so that optimal = dP-optimal,
cylically monotone = dP-cylically monotone.
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Very weak MCP condition

Definition ([Cavalletti-Huesmann '15])

A metric measure space is qualitatively non-degenerate if for all
R > 0 there is a function fr:(0,1) — (0,00) with

Cg = limsup,_,q fr(t) > & such that whenever {z}, A C Bg(w)
then

m(A; ;) > fr(t)m(A).

Remark
Note that 2C'g > 1.
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Optimal transport maps

Optimal transport and non-branching geod: | Martin Kell | 11/33



Optimal transport maps

Definition (Good Transport Behavior)

A metric measure space (M,d, m) has good transport behavior
(GTB),, if for all p € Pp¢(M) and all v € P,(M) every optimal
coupling  is induced by a transport map 7', i.e. w= (id xXT').p.
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Optimal transport maps

Definition (Good Transport Behavior)

A metric measure space (M,d, m) has good transport behavior
(GTB),, if for all p € Pp¢(M) and all v € P,(M) every optimal
coupling  is induced by a transport map 7', i.e. w= (id xXT').p.

Theorem ([Cavalletti-Huesmann ’15])

Assume (M,d,m) is qualitatively non-degenerate and
non-branching. Then (M,d,m) has good transport behavior
(GTB),, for all p € (1,00).
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Proof for v = (1 —\)dy, + Aoz, 71 # 22
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Proof for v = (1 —\)dy, + Aoz, 71 # 22

e Choose some optimal coupling 7 and note

suppm = Ay X {1 }UAg x {z2}UA x {x1,22}.
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e Choose some optimal coupling 7 and note
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e Observation:
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Proof for v = (1 —\)dy, + Aoz, 71 # 22

e Choose some optimal coupling 7 and note
suppm = Ay X {1 }UAg x {z2}UA x {x1,22}.

e Observation:
e 7 is induced by a transport map iff m(A) =0.
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Proof for v = (1 —\)dy, + Aoz, 71 # 22

e Choose some optimal coupling 7 and note
suppm = Ay X {1 }UAg x {z2}UA x {x1,22}.

e Observation:
e 7 is induced by a transport map iff m(A) =0.
e by non-branching for t € (0,1)

At oy NAL 4y = 2.
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Proof for v = (1 —\)dy, + Aoz, 71 # 22

e Choose some optimal coupling 7 and note
suppm = Ay X {z1 }UAs x {29 }UA X {x1,22}.

e Observation:
e 7 is induced by a transport map iff m(A) =0.
e by non-branching for t € (0,1)

At gy N Ay 2y = 2.
e by qualitative non-degeneracy (and A is compact)

m(A) > limsupm(A; o, UA¢ )

t—0
=limsupm(As 5, ) +m(As z,)
t—0
=2limsup f(t)m(A) = 2Crm(A).
t—0
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Proof for v = (1 —\)dy, + Aoz, 71 # 22

e Choose some optimal coupling 7 and note
suppm = Ay X {z1 }UAs x {29 }UA X {x1,22}.

e Observation:
e 7 is induced by a transport map iff m(A) =0.
e by non-branching for t € (0,1)

At gy N Ay 2y = 2.
e by qualitative non-degeneracy (and A is compact)

m(A) > limsupm(A; o, UA¢ )

t—0
=limsupm(As 5, ) +m(As z,)
t—0
=2limsup f(t)m(A) = 2Crm(A).
t—0

¢ Conclusion: m(A) =0 and 7 is induced by a transport map.
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Proof for v =" | \;d,,
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Proof for v =" | N0y,

e Choose some optimal coupling 7 then

n n
suppm = | ) As x {a;}UJ Aij x {zi, 25}
i=1 i<j
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Proof for v =" | \;d,,

e Choose some optimal coupling 7 then

n n
suppm = | ) As x {a;}UJ Aij x {zi, 25}
i=1 i<j

e By previous slide m(A;;) =0.
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Proof for v =" | \;d,,

e Choose some optimal coupling 7 then

n n
suppm = | ) As x {a;}UJ Aij x {zi, 25}
i=1 i<j

e By previous slide m(A;;) =0.

T(z) = {:L’Z x €A

e Hence

x  otherwise

is a transport map.
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Observation
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Observation

e For distinct z,y € M and compact A C M

A-={ze M|d(x,z) =d(y,2)}
Ay =A\A_.
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Observation

e For distinct z,y € M and compact A C M

A-={ze M|d(x,z) =d(y,2)}
Ay =A\A_.

o If Ax{xz,y} is cyclically monotone then even without
non-branching
(Ax)ta N (Ag)y = 2.
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Observation

e For distinct x,y € M and compact AC M

A_={ze M|d(z,z)=d(y,z)}
Ay =A\A_.

o If Ax{xz,y} is cyclically monotone then even without
non-branching

(Az)ta N (Ag)ty = 2.

e Hence if
Vo #y:m({z € Md(z,2) = d(y.2)} = 0

then any optimal coupling between © < m and v discrete is
induced by a transport map.
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Observation

e For distinct x,y € M and compact AC M

A_={ze M|d(z,z)=d(y,z)}
Ay =A\A_.

o If Ax{xz,y} is cyclically monotone then even without
non-branching

(Az)ta N (Ag)ty = 2.

e Hence if
Vo #y:m({z € Md(z,2) = d(y.2)} = 0

then any optimal coupling between © < m and v discrete is
induced by a transport map.

e This holds for any normed space and measure assigning zero
mass to hyperplanes.
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Proof for general v
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Proof for general v

Theorem (Selection dichotomy, see e.g. [K. '17])

If some optimal coupling 7 is not induced by a transport map then
there is a compact set K C supp(p1)«m with m(K x M) >0 and
two continuous maps T1,To : M — M with Ty (K)NTy(K) =&
such that

rOyr®

is cyclically monotone where T'") = graph - T;.

Optimal transport and non-branching geodesics | Martin Kell | 15/33



Proof for general v

Theorem (Selection dichotomy, see e.g. [K. '17])

If some optimal coupling 7 is not induced by a transport map then
there is a compact set K C supp(p1)«m with m(K x M) >0 and
two continuous maps T1,To : M — M with Ty (K)NTy(K) =&
such that

rOyr®

is cyclically monotone where T") = graph ;- T;.
Lemma
If (M,d) is non-branching then
rnr® = o
and

m(K) > limsup [m(I'{") + m(r(?)]
t—0
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U n iform a p prOXi m at i on (simplified for presentation)

Lemma
If (M,d,m) is non-branching and qualitatively non-degenerate then

m(I}") > f(H)m(K).
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U n iform a p pl’OXi m at i on (simplified for presentation)

Lemma

If (M,d,m) is non-branching and qualitatively non-degenerate then
m(ry") > f(t)m(K).

Idea of proof.

Let vy, — (T3)spu| ;o with v, discrete then eventually
S

so that

m(I'}") > limsupm(T{"") > f(t)m(K).

n—0
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Conclusion

e |f the claim was wrong then using we arrive at the following
contradiction

m(K) > limsupm(Fgl)) —i—m(ng))
t—0
> 2limsup f(t)m(K) = 2Crm(K).
t—0

Optimal transport and non-branching geodesics | Martin Kell | 17/33



Conclusion

e If the claim was wrong then using we arrive at the following
contradiction

m(K) > limsupm(T'{") + m(r'?)
t—0

> 2limsup f(t)m(K) = 2Crm(K).
t—0

e Thus, any optimal transport between < m and arbitrary v
is induced by a transport map.
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Ingredients of the proof
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Ingredients of the proof

¢ (weak) non-branching property

m(Y Nr?) =0
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Ingredients of the proof

¢ (weak) non-branching property

m(Y Nr?) =0

e qualitative non-degeneracy
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Ingredients of the proof

¢ (weak) non-branching property

m(Y Nr?) =0

e qualitative non-degeneracy = not an optimal transport
property
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Partial extension to p =1, see e.g. [K.-Suhr 18]

e For simplicity let M =R"
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Partial extension to p =1, see e.g. [K.-Suhr 18]

e For simplicity let M =R"

Lemma

IfT' C {z, <0} x {x, =0} is d-cyclically monotone then for all
distinct geodesics ~y,n with

(v0,71), (no,m) €T

it holds Yt ;é Nt
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Partial extension to p =1, see e.g. [K.-Suhr 18]

e For simplicity let M =R"

Lemma

IfT' C {z, <0} x {x, =0} is d-cyclically monotone then for all
distinct geodesics ~y,n with

(7v0,71), (m0,m) €T

it holds Yt ;é Nt

Corollary

Assume supp p X suppv C {z, <0} x {z, =0} then any
d-optimal coupling is induced by a transport map.

Remark

Works for non-bran., qual. non-deg. spaces if v is supported in a
level set of a dual solution.

Optimal transport and non-branching geodesics | Martin Kell | 19/33



Lorentzian setting [K.-Suhr "18]

e Lagrangian for p € (0,1]
—(—g(v,v 5 vel

00 otherwise

induces cost function ¢, : M x M — (—00,0]U {0}
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Lorentzian setting [K.-Suhr "18]

e Lagrangian for p € (0,1]
v _
—(—g(v,v))2 vecC
Lp(v) = { ( ) :
00 otherwise

induces cost function ¢, : M x M — (—00,0]U {0}
e For p e (0,1), geodesics connecting (z,y) € ¢, *((—o0,0)) are
non-branching.
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Lorentzian setting [K.-Suhr "18]

e Lagrangian for p € (0,1]

veCl
00 otherwise
induces cost function ¢, : M x M — (—o0,0]U{o0}
e For p e (0,1), geodesics connecting (z,y) € ¢, *((—o0,0)) are
non-branching.

e For p=1 and hyperbolic spacetimes, introduce smooth time
function 7: M — R with

YoeC:dr(v)>0

and then all causal geodesics can be parametrized
time-affinely and geodesics with endpoints in

{r<a}x{r=a}

are non-branching.
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Spaces with good transport behavior (1)

e Assume (M,d, m) has good transport behavior (GTB),,
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Spaces with good transport behavior (1)

e Assume (M,d, m) has good transport behavior (GTB),,

o for every g < m and p; the optimal coupling is unique and
induced by a transport map
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Spaces with good transport behavior (1)

i

e Assume (M,d, m) has good transport behavior (GTB),,

o for every g < m and p; the optimal coupling is unique and
induced by a transport map

e for every o < m and pp the geodesic ¢+ i is unique
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Spaces with good transport behavior (1)

e Assume (M,d, m) has good transport behavior (GTB),,

o for every g < m and p; the optimal coupling is unique and
induced by a transport map

e for every o < m and pp the geodesic ¢+ i is unique

e if, in addition, m is qual. non-deg. then u; < m
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Obstructions to good transport behavior (1)

o Let T'=10,1]; U[0,1]3U[0,1]3 be the tripod glued at 0.
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Obstructions to good transport behavior (1)

o Let T'=10,1]; U[0,1]3U[0,1]3 be the tripod glued at 0.

e (T,d,m) is a CAT(0)-space, but will never have good
transport behavior.
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Essentially non-branching (1)

e A subset of geodesics G C Geojg 1)(M,d) is called
non-branching if for all v, € G with v =mng or v1 = it

holds whenever ~, =1, for some t € (0,1) it holds 4 = n; for
all t € [0,1].
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Essentially non-branching (1)

e A subset of geodesics G C Geojg 1)(M,d) is called
non-branching if for all v, € G with v =mng or v1 = it
holds whenever ~, =1, for some t € (0,1) it holds 4 = n; for
all t € [0,1].

Definition ([Rajala-Sturm '14])

The space (M,d,m) is essentially non-branching (EN B),, if for
every optimal dynamical coupling o with (eg).0,(e1)«0 < m is
concentrated on a non-branching set.
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Essentially non-branching (1)

e A subset of geodesics G C Geojg 1)(M,d) is called
non-branching if for all v, € G with yg =19 or y; = it
holds whenever ~, =1, for some t € (0,1) it holds 4 = n; for
all t € [0,1].

Definition ([Rajala-Sturm '14])
The space (M,d,m) is essentially non-branching (EN B),, if for

every optimal dynamical coupling o with (eg).0,(e1)«0 < m is
concentrated on a non-branching set.

e May alter condition: For each t¢1,...,t, € (0,1), o is
concentrated on a cyclically monotone set I" such that for all
distinct geodesics v and n with endpoints in T' it holds

Vi F M-
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Spaces with good transport behavior (I1)

o A subset of geodesics G C Geojg,1)(M,d) is called
non-branching to the left if for all v, € G with v =19 it

holds whenever ~, = 1, for some t € (0,1) it holds ¢ = n; for
all t € [0,1].
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Spaces with good transport behavior (I1)

i

e A subset of geodesics G C Geojy (M, d) is called
non-branching to the left if for all v, € G with v =19 it

holds whenever ~, = 1, for some t € (0,1) it holds ¢ = n; for
all t € ]0,1].

Theorem ([K. '17])

If (M,d,m) has good transport behavior then any dynamical
coupling o with (eg)s«0 < m is concentrated on a set that is
non-branching to the left. In particular, (M,d,m) is essentially
non-branching (EN B),,.
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Obstructions to good transport behavior (1)

e Choose three mutually singular measures my,ms and mg on
[0,1].

e For the tripod (T,d), regard them as measures on [0,1;] and
set m = mj; +msy+ms
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Obstructions to good transport behavior (1)

e Choose three mutually singular measures mj,mo and ms on
[0,1].
e For the tripod (7', d), regard them as measures on [0,1;] and
set m = mj; +msy+ms
e Observations:
e (T,d,m) is essentially non-branching
e all optimal couplings 7w with (p;).7m < m are induced by
transport map
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Essentially non-branching (I1)

Theorem ([K. '17])

If (M,d, m) is essentially non-branching (EN B),, and qualitatively
non-degenerate then it has good transport behavior (GT B),.
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Idea of the proof
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Idea of the proof

e As v <« m essentially non-branching cannot be directly used
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Idea of the proof

e As v <« m essentially non-branching cannot be directly used

e Construct dynamical optimal coupling o with
(ee)x0, (€1—¢)x0 < m with

m|. < (e)s0<m,

1—e 1—e

for a cyclically monotone set I" with (eg,e1—¢)«o(I") = 1.
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Idea of the proof

e As v <« m essentially non-branching cannot be directly used

e Construct dynamical optimal coupling o with
(ee)x0, (€1—¢)x0 < m with

m|. < (e)s0<m,

1—e 1—e

for a cyclically monotone set I" with (eg,e1—¢)«o(I") = 1.

e Essentially non-branching implies
m(C'MNr®) =0

when I'Vis given via the Selection Dichotomy.
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Idea of the proof

As v <« m essentially non-branching cannot be directly used

Construct dynamical optimal coupling o with
(ee)x0, (€1—¢)x0 < m with

m|. < (e)s0<m,

1—e 1—e

for a cyclically monotone set I" with (eg,e1—¢)«o(I") = 1.

Essentially non-branching implies
m(C'MNr®) =0

when I'Vis given via the Selection Dichotomy.

A proof a la Cavalletti-Huesmann gives the result.
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Intermediate summary

e Assume (M,d,m) essentially non-branching and qualitatively
non-degenerate

e Let o= fom and py arbitrary
e Conclusion:

@ (uniqueness) unique optimal dynamical coupling o
® (good transport behavior)

(e0,e1)x0 = (id xT1)«po
© (strong interpolation property)
(e¢)«0 = frm

O (strong bounded density property)

Je(ye) < fo(70)-

1
fr(t)
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Application to Measure Rigidity
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Application to Measure Rigidity

Theorem ([K. '17])

Assume (M,d,m1) and (M,d,my) are both essentially
non-branching (EN B),, and qualitatively non-degenerate then m;
and mgy are mutually absolutely continuous.
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Application to Measure Rigidity

Theorem ([K. '17])

Assume (M,d,m1) and (M,d,my) are both essentially
non-branching (EN B),, and qualitatively non-degenerate then m;
and mgy are mutually absolutely continuous.

Corollary

Fori=1,2 let (M,d,m;) be RCD(Kj, N;)-spaces with N; < cc.
Then my and my are mutually absolutely continuous.
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1st Proof of the Measure Rigidity (1)
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1st Proof of the Measure Rigidity (1)

e Decompose my = fm; +mj
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1st Proof of the Measure Rigidity (1)

e Decompose my = fm; +mj

e Assume, by contradiction, m$ # 0.

Optimal transport and non-branching geodesics | Martin Kell | 30/33



1st Proof of the Measure Rigidity (1)

e Decompose my = fm; +mj

e Assume, by contradiction, m$ # 0.

e Observation: We must have f # 0 by strong interpolation
property
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1st Proof of the Measure Rigidity (1)

Decompose my = fmj +mj

Assume, by contradiction, m$ # 0.

Observation: We must have f # 0 by strong interpolation
property

The following claim implies gives a contradiction

Claim
mj is both essentially non-branching and qualitatively
non-degenerate
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1st Proof (1) - proof of the claim

e Note if m;(A;,) =m;(A) =0 and then

m3(Asz) =my(Arg) > fr(t)ma(A) = fr(t)m3(A).
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1st Proof (1) - proof of the claim

e Note if m;(A;,) =m;(A) =0 and then
m3(Arz) =my(Arg) > fr(t)ma(A) = fr(t)m3(A).

e Observation: Since my(A; ;) >0 for all ¢ € (0,1], it is possible
to show that for mo-a.e. x € A there is a unique geodesic
~(#) such that

z €7((0,1))

Optimal transport and non-branching geodesics | Martin Kell | 31/33



1st Proof (1) - proof of the claim

e Note if m;(A;,) =m;(A) =0 and then
mj(Ae) =my(Are) > fr(t)ma(A) = fr(t)m3(A).

e Observation: Since my(A; ;) >0 for all ¢ € (0,1], it is possible
to show that for mo-a.e. x € A there is a unique geodesic
~(#) such that

z€yW((0,1))

Lemma

There is K CC A with my(K) >0 and t — p; geodesic with
p1 << mg, [y, = %mﬂ[{ and p1 = 9,.
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1st Proof (1) - proof of the claim

e Note if m;(A;,) =m;(A) =0 and then
mj(Ae) =my(Are) > fr(t)ma(A) = fr(t)m3(A).

e Observation: Since my(A; ;) >0 for all ¢ € (0,1], it is possible
to show that for mo-a.e. x € A there is a unique geodesic
~(#) such that

z€yW((0,1))

Lemma
There is K CC A with my(K) >0 and t — p; geodesic with
p1 << mg, [y, = %mﬂ[{ and p1 = 9,.

o Lemma implies if p4, Lmy then p, Lm; for all ¢ € [0,1) which
yields the claim.
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2nd Proof of the Measure Rigidity
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2nd Proof of the Measure Rigidity

e Assume m{ # 0 and choose jp = ﬁmg}K and p; < my
2
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2nd Proof of the Measure Rigidity

e Assume m{ # 0 and choose jp = ng}l( and p; < my
e By strong intersection property
JASG LIRS ¢ D)

hence ji; L ms3
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2nd Proof of the Measure Rigidity

e Assume m{ # 0 and choose jp = ﬁmg}K and p; < my
2
e By strong intersection property

JASG LIRS ¢ D)
hence ji; L ms3
e By bounded density property for pu; = fims

1
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2nd Proof of the Measure Rigidity

e Assume m{ # 0 and choose jp = ﬁmg\K and p; < my
2
e By strong intersection property

JASG LIRS ¢ D)
hence ji; L ms3
e By bounded density property for pu; = fims

1

e Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17])

If = ﬁmb{ and pu, = fym with Wy, (pn, 1) — 0 and
| frlloo < C then w A, for all sufficiently large n.
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Thank you for your attention



