Title: The \mathbb{Q} -algebraicity problem in real algebraic geometry

Abstract. In 2020, Parusiński and Rond proved that every algebraic set $V \subset \mathbb{R}^n$ is homeomorphic to a $\overline{\mathbb{Q}}^r$ -algebraic set $V' \subset \mathbb{R}^n$, where $\overline{\mathbb{Q}}^r$ denotes the field of real algebraic numbers. The aim of this talk is provide some classes of algebraic sets that positively answer the following open problem:

Q-ALGEBRAICITY PROBLEM: (Parusiński, 2021) Is every algebraic set $V \subset \mathbb{R}^n$ homeomorphic to some Q-algebraic set $V' \subset \mathbb{R}^m$, with $m \ge n$?

We recall the notions of $\mathbb{R}|\mathbb{Q}$ -local ring, $\mathbb{R}|\mathbb{Q}$ -singular and $\mathbb{R}|\mathbb{Q}$ -nonsingular points for a \mathbb{Q} -algebraic set introduced by Fernando and Ghiloni. Hence, a natural notion of \mathbb{Q} -nonsingular \mathbb{Q} -algebraic set arise. After an overview on approximation results in real algebraic geometry, I will explain how \mathbb{Q} -nonsingular \mathbb{Q} -algebraic sets come into play to provide a version over \mathbb{Q} of the relative Nash-Tognoli theorem. Latter result, combined with resolution of singularities and a version over \mathbb{Q} of the classical blowing down lemma, allows us to give a complete positive answer to the above \mathbb{Q} -ALGEBRAICITY PROBLEM in the case of nonsingular algebraic sets and algebraic sets with isolated singularities.