Algebra Übungsblatt 10

Abgabe: Bis zum 01.07. um 10 Uhr über URM. Abgabe in Gruppen bis zu drei Personen.

Aufgabe 1 (3+3+3 Punkte).

Sei $K = \mathbb{Q}(\sqrt{2} - \sqrt{7})$.

- a) Zeige, dass $K = \mathbb{Q}(\sqrt{2}, \sqrt{7})$.
- b) Zeige, dass $\sqrt{7} \notin \mathbb{Q}(\sqrt{2})$ und berechne $[K : \mathbb{Q}]$.
- c) Berechne das Minimalpolynom von $\sqrt{2} \sqrt{7}$ über \mathbb{Q} .

Aufgabe 2 (3+3+3 Punkte + 2 Zusatzpunkte).

Konstruieren Sie einen Körper mit 9 Elementen an Hand der folgenden Anleitung:

- 1) Zeigen Sie, dass $f := X^2 + 2X + 2 \in \mathbb{Z}_3[X]$ irreduzibel ist.
- 2) Geben Sie alle Elemente von $\mathbb{Z}_3[X]/\langle f \rangle$ an. Um wie viele Elemente handelt es sich?
- 3) Zeigen Sie mit Hilfe der Verknüpfungstabellen, dass $(\mathbb{Z}_3[X]/\langle f \rangle, +, \cdot)$ ein Körper ist.
- 4) **Zusatz**: Sei $\mathbb{F}_9 := \mathbb{Z}_3[X]/\langle f \rangle$ der gerade von Ihnen konstruierte Körper. Berechnen Sie die Nullstellen von $X^3 + X^2 + X + 1 \in \mathbb{F}_9[X]$ in \mathbb{F}_9 . Geben Sie eine Zerlegung in irreduzible Polynome an.

Aufgabe 3 (3+3+3 Punkte).

Es sei $\zeta = e^{\frac{2\pi i}{7}} \in \mathbb{C}$ und $f = X^3 + X^2 - 2X - 1 \in \mathbb{Q}[X]$. Zeigen Sie:

a) ζ ist Nullstelle von $\sum_{i=0}^{6} X^{i}$.

Hinweis: Zeigen Sie zunächst, dass ζ Nullstelle von X^7-1 ist.

- b) $\alpha_1:=\zeta+\zeta^6$, $\alpha_2:=\zeta^2+\zeta^5$ und $\alpha_3:=\zeta^3+\zeta^4\in\mathbb{R}\setminus\mathbb{Q}$ sind Nullstellen von f. Folgern Sie daraus, dass f irreduzibel in $\mathbb{Q}[X]$ ist. (Sie dürfen dabei voraussetzen, dass $\alpha_i\in\mathbb{R}\setminus\mathbb{Q}$ für i=1,2,3.)
- c) Das reguläre 7-Eck lässt sich nicht mit Zirkel und Lineal aus der Menge $\{0,1\}$ konstruieren.