Algebra Übungsblatt 8

Abgabe: Bis zum 17.06. um 10 Uhr über URM. Abgabe in Gruppen bis zu drei Personen.

Aufgabe 1 (4+4 Punkte).

Bestimmen Sie die Elementarteiler von

$$A = \begin{pmatrix} X-1 & -1 & 0 & -1 \\ 0 & X-2 & 0 & 0 \\ 1 & -1 & X-2 & -1 \\ 1 & -1 & 0 & X-3 \end{pmatrix} \in \mathsf{Mat}(4,\mathbb{R}[X])$$

und die Jordan-Normalform von

$$B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ -1 & 1 & 2 & 1 \\ -1 & 1 & 0 & 3 \end{pmatrix}.$$

Aufgabe 2 (4+4 Punkte).

- a) Sei R = K[X] für einen Körper K, $A \in \mathsf{Mat}(n,K)$ eine Matrix und $U = (X\mathbf{1} A))K[X]^n$. Zeigen Sie, dass der größte Elementarteiler von R^n/U gerade das Minimalpolynom von A ist.
- b) Zeigen Sie, $K[X]/\langle (X-a)^2(X-b)\rangle\cong K^3$ für $a\neq b$ und bestimmen Sie die Elementarteiler von $K[X]^3/U$ für $U=(X\mathbf{1}-A)K[X]^3$ mit $A=\begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$ und $a\neq b$.

Aufgabe 3 (2+4 Punkte).

Sei $\alpha \in \mathbb{C}$ ein Element, das die Gleichung $\alpha^5 + 2\alpha^3 + 2 = 0$ erfüllt und es sei $K = \mathbb{Q}(\alpha)$.

- a) Finden Sie eine Basis von K als $\mathbb{Q} ext{-Vektorraum}$.
- b) Schreiben Sie $\frac{1}{\alpha^2+2}$ und $(\alpha^2+2)^3$ als $\mathbb Q$ -Linearkombination der Basiselemente.

Hinweis: Sie dürfen bei a) verwenden, dass das Polynom $x^5 + 2x^3 + 2 \in \mathbb{Q}[X]$ irreduzibel ist. Der Beweis wird auf einem kommenden Blatt nachgeholt.

Aufgabe 4 (4+4 Punkte).

Es sei L/K eine Körpererweiterung. Beweisen Sie:

- a) Ist $\alpha \in L$ vom Grad 7 über K, so ist $K(\alpha) = K(\alpha^2)$.
- b) Sind α, β vom Grad m bzw. n über K, sodass ggT(m, n) = 1, so ist $[K(\alpha, \beta) : K] = mn$.