## 1. Exercises "Toric geometry" SoSe 21

Matilde Manzaroli, Hannah Markwig

## Hand in on May 2 before 2pm via urm

Exercise 1: Let $V$ be an affine variety and $f_{1}, \ldots, f_{s} \in \mathbb{C}[V]$. They induce a polynomial map $\Phi: V \rightarrow \mathbb{C}^{s}$. The corresponding map on coordinate rings is given by

$$
\Phi^{*}: \mathbb{C}\left[x_{1}, \ldots, x_{s}\right] \rightarrow \mathbb{C}[V]: x_{i} \mapsto f_{i} .
$$

Let $Y \subset \mathbb{C}^{s}$ be the Zariski closure of the image of $\Phi$. Prove that $I(Y)=\operatorname{Ker}\left(\Phi^{*}\right)$.

Exercise 2: Let $\mathcal{A}=\left\{((4,0),(3,1),(1,3),(0,4)\} \subset \mathbb{R}^{2}\right.$. Show that the ideal $I$ of the affine toric variety $Y_{\mathcal{A}}$ defined by $\mathcal{A}$ (like in definition 1.10) is

$$
I=\left\langle x w-y z, y w^{2}-z^{3}, x z^{2}-y^{2} w, x^{2} z-y^{3}\right\rangle \subset \mathbb{C}[x, y, z, w] .
$$

You may use the fact that $V(I)$ is irreducible and of dimension 2 (this can be confirmed e.g. by using a Computeralgebrasystem like Singular).

Exercise 3: Let $\mathcal{A}_{1}=\{(2,0),(1,1),(1,3)\} \subset \mathbb{R}^{2}$ and $\mathcal{A}_{2}=\{(3,0),(1,1),(0,3)\} \subset$ $\mathbb{R}^{2}$.
(1) Show that $Y:=Y_{\mathcal{A}_{1}}=Y_{\mathcal{A}_{2}}=V\left(x z-y^{3}\right) \subset \mathbb{C}^{3}$.
(2) Regard $\Phi_{\mathcal{A}_{i}}$ as maps from $\mathbb{C}^{2}$ to $Y$. Show that $\Phi_{\mathcal{A}_{2}}$ is surjective and $\Phi_{\mathcal{A}_{1}}$ is not.

Exercise 4: Let $T_{N}$ be a torus with character lattice $M$. Then every point $t \in T_{N}$ gives an evaluation map $\varphi_{t}: M \rightarrow \mathbb{C}^{*}: m \mapsto \chi^{m}(t)$. Show that $\varphi_{t}$ is a group homomorphism and that the map $t \mapsto \varphi_{t}$ induces a group isomorphism $T_{N} \cong \operatorname{Hom}_{\mathbb{Z}}\left(M, \mathbb{C}^{*}\right)$.

