1. Exercises "Toric geometry" SoSe 21 Matilde Manzaroli, Hannah Markwig

Hand in on May 2 before 2pm via urm

Exercise 1: Let V be an affine variety and $f_1, \ldots, f_s \in \mathbb{C}[V]$. They induce a polynomial map $\Phi: V \to \mathbb{C}^s$. The corresponding map on coordinate rings is given by

$$\Phi^* : \mathbb{C}[x_1, \dots, x_s] \to \mathbb{C}[V] : x_i \mapsto f_i$$

Let $Y \subset \mathbb{C}^s$ be the Zariski closure of the image of Φ . Prove that $I(Y) = \text{Ker}(\Phi^*)$.

Exercise 2: Let $\mathcal{A} = \{((4,0), (3,1), (1,3), (0,4)\} \subset \mathbb{R}^2$. Show that the ideal *I* of the affine toric variety $Y_{\mathcal{A}}$ defined by \mathcal{A} (like in definition 1.10) is

$$I = \langle xw - yz, yw^2 - z^3, xz^2 - y^2w, x^2z - y^3 \rangle \subset \mathbb{C}[x, y, z, w].$$

You may use the fact that V(I) is irreducible and of dimension 2 (this can be confirmed e.g. by using a Computeralgebrasystem like SINGULAR).

Exercise 3: Let $\mathcal{A}_1 = \{(2,0), (1,1), (1,3)\} \subset \mathbb{R}^2$ and $\mathcal{A}_2 = \{(3,0), (1,1), (0,3)\} \subset \mathbb{R}^2$ \mathbb{R}^2 .

- (1) Show that $Y := Y_{\mathcal{A}_1} = Y_{\mathcal{A}_2} = V(xz y^3) \subset \mathbb{C}^3$. (2) Regard $\Phi_{\mathcal{A}_i}$ as maps from \mathbb{C}^2 to Y. Show that $\Phi_{\mathcal{A}_2}$ is surjective and $\Phi_{\mathcal{A}_1}$ is not.

Exercise 4: Let T_N be a torus with character lattice M. Then every point $t \in T_N$ gives an evaluation map $\varphi_t : M \to \mathbb{C}^* : m \mapsto \chi^m(t)$. Show that φ_t is a group homomorphism and that the map $t \mapsto \varphi_t$ induces a group isomorphism $T_N \cong \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{C}^*).$