6. Exercises "Toric geometry" SoSe 21

Matilde Manzaroli, Hannah Markwig

Hand in on June 13 before 2pm via urm

Exercise 1: Solve Exercise 1.3.12 from the book: show that the normalization of an affine toric variety in Prop. 1.3.8 is a toric morphism.

Exercise 2: Which of the following affine varieties is smooth, which is normal?
(1) $\operatorname{Spec}\left(\mathbb{C}\left[x^{3} y, x^{2} y, z\right]\right)$
(2) $\operatorname{Spec}\left(\mathbb{C}\left[x, y, z, x y z^{-1}\right]\right)$
(3) $\operatorname{Spec}\left(\mathbb{C}\left[x^{5} y^{3} z^{2}, x^{-1} y z^{3}\right]\right)$

Exercise 3: Solve Exercise 3.9 from the book (prove Prop. 1.3.15): Suppose that we have strongly convex rational cones $\sigma_{i} \subset\left(N_{i}\right)_{\mathbb{R}}$ and a homomorphism $\bar{\phi}: N_{1} \rightarrow N_{2}$. Then the induced map $\phi: T_{N_{1}} \rightarrow T_{N_{2}}$ extends to a map of affine toric varieties $\phi: U_{\sigma_{1}} \rightarrow U_{\sigma_{2}}$ if and only if $\bar{\phi}_{\mathbb{R}}\left(\sigma_{1}\right) \subset \sigma_{2}$.

Exercise 4: Let S_{1} be the semigroup generated by

$$
\{(1,0,0),(0,1,0),(0,0,1),(1,1,-1)\} \subset \mathbb{Z}^{3}=: M_{1}
$$

and S_{2} the semigroup generated by

$$
\{(1,0),(1,1),(1,2)\} \subset \mathbb{Z}^{2}=: M_{2} .
$$

Prove that the map from the dual lattice $N_{1}=\operatorname{Hom}\left(M_{1}, \mathbb{Z}\right)=\mathbb{Z}^{3}$ to $N_{2}=$ $\operatorname{Hom}\left(M_{2}, \mathbb{Z}\right)=\mathbb{Z}^{2}$ given by the matrix

$$
\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right)
$$

induces a morphism of toric varieties

$$
\operatorname{Spec}\left(\mathbb{C}\left[S_{1}\right]\right)=V(x y-z w) \rightarrow V\left(a c-b^{2}\right)=\operatorname{Spec}\left(\mathbb{C}\left[S_{2}\right]\right) .
$$

Compute the induced map on toric varieties in the coordinates (x, y, z, w) and (a, b, c).

