Übungen zur Vorlesung Multilineare Algebra

Sommersemester 2024

Blatt 2

Abgabetermin: Montag, 13.05.2024, 10:00 Uhr

Aufgabe 1

(2+4=6 Punkte)

(a) Sei V ein endlich dimensionaler Vektorraum. Seien $U_1, U_2 \subset V$ und $W_1, W_2 \subset V^{\vee}$ Untervektorräume. Beweisen Sie die folgende Relation für Annulatoren: $(U_1 + U_2)^{\circ} = U_1^{\circ} \cap U_2^{\circ}$.

(b) Sei
$$U \subset \mathbb{R}^5$$
 durch $U = \langle \begin{pmatrix} 2\\1\\1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\2\\4\\4 \end{pmatrix}, \begin{pmatrix} 4\\1\\1\\0\\1 \end{pmatrix} \rangle$ gegeben. Bestimmen Sie eine Basis von U° .

Aufgabe 2

(2+2=4 Punkte)

- (a) Welches $f \in (\mathbb{R}^3)^{\vee}$ erfüllt $f \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2, f \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 5, f \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -2$?
- (b) Gibt es ein $f \in (\mathbb{R}^2)^{\vee}$ welches

$$f\left(\begin{array}{c}2\\0\end{array}\right)=1, f\left(\begin{array}{c}1\\1\end{array}\right)=5, f\left(\begin{array}{c}1\\3\end{array}\right)=3$$

erfüllt?

Aufgabe 3

(4 Punkte)

Sei V ein endlich dimensionaler \mathbb{K} -Vektorraum mit Basis B und $b:V\times V\to \mathbb{K}$ eine nicht ausgeartete Bilinearform. Zeigen Sie für die Abbildung

$$b'': V \to V^{\vee}, w \mapsto b_w$$

aus der Vorlesung folgende Aussage: ${}_BM_{B^\vee}(b'')=M_B(b)$, wobei ${}_BM_{B^\vee}(b'')$ die Darstellungsmatrix der linearen Abbildung b'' bezüglich der Basen B und B^\vee und $M_B(b)$ die Gramsche Matrix von b bezüglich B bezeichne.

Aufgabe 4

(5 Punkte)

Seien V ein \mathbb{K} -Vektorraum, $U \subset V$ ein Unterraum und $\vartheta : V \to V/U$ die Restklassenabbildung. Zeigen Sie, dass das Paar $(V/U, \vartheta)$ folgender universeller Eigenschaft genügt:

Für alle K-Vektorräume W und linearen Abbildungen $f':V\to W$ mit $f'\mid_U=0$ existiert genau ein lineares $f:V/U\to W$ mit $f'=f\circ\vartheta$.

Aufgabe 5

(3 Punkte)

Zeigen Sie, dass $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto xy$ bilinear ist. Wie sieht der Graph G von f in \mathbb{R}^3 aus? Zeigen Sie, dass die Fläche $G \subset \mathbb{R}^3$ eine Vereinigung von Geraden (d.h. affinen 1-dimensionalen Unterräumen von \mathbb{R}^3) ist.

Die Abgabe der Übungsblätter erfolgt online über URM. Das Repetitorium findet zweiwöchentlichs freitags von 10-12 Uhr im Hörsaal N16 statt.