UNIVERSITÄT TÜBINGEN FACHBEREICH MATHEMATIK

Hannah Markwig Christoph Goldner

Übungen zur Vorlesung lineare Algebra 1

Wintersemester 2018/19

Blatt 10

Abgabetermin: Dienstag, 8.1.2019, 10:15 Uhr

Aufgabe 1

(2+2+2+0*=6 Punkte)

Sei die Matrix

$$A := \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \operatorname{Mat}(2, \mathbb{R})$$

gegeben. Sei außerdem die Determinante det(A) nicht Null.

- (a) Berechnen Sie die Adjunkte $A^{\#}$ von A.
- (b) Berechnen Sie A^{-1} und $A^{-1} \cdot \left(\begin{array}{c} e \\ f \end{array} \right)$ für einen beliebigen Vektor $\left(\begin{array}{c} e \\ f \end{array} \right) \in \mathbb{R}^2$.
- (c) Bestimmen Sie mit Hilfe der Cramerschen Regel die Lösung des folgenden Gleichungssystems:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} e \\ f \end{array}\right).$$

(d*) Vergleichen Sie ihr Ergebnis mit ihrer Mitschrift aus der ersten Vorlesung der linearen Algebra 1.

(Hinweis: Bei (d) ist keine schriftliche Antwort verlangt.)

Aufgabe 2 (8 Punkte)

Sei die Matrix

$$A := \begin{pmatrix} 3 & -1 & -2 & 2 \\ 3 & -1 & -2 & 2 \\ 2 & -1 & -1 & 2 \\ 1 & 0 & 0 & 1 \end{pmatrix} \in \operatorname{Mat}(4, \mathbb{R})$$

gegeben. Ist A diagonalisierbar? Wenn ja, finden Sie eine Diagonalmatrix A', die konjugiert zu A ist und ein $T \in GL(4, \mathbb{R})$, sodass $TAT^{-1} = A'$ gilt. Ist A' eindeutig?

Aufgabe 3 (2+3+1=6 Punkte)

Sei $n \in \mathbb{N}_{>0}$ und seien \mathbb{K} ein Körper, $A = (a_{ij})_{i,j=1,\dots,n} \in \operatorname{Mat}(n,\mathbb{K})$ eine Matrix. Vergewissern Sie sich, dass das charakteristische Polynom $\chi_A \in \mathbb{K}[x]$ von A Grad n hat und zeigen Sie, dass in χ_A

- (a) der Koeffizient von x^n gleich $(-1)^n$,
- (b) der Koeffizient von x^{n-1} gleich $(-1)^{n-1} \cdot \sum_{i=1}^{n} a_{ii}$ und
- (c) der Koeffizient von x^0 gleich det(A) ist.

Aufgabe 4 (4 Punkte)

Sei $n \in \mathbb{N}_{>0}$ und sei $A \in \operatorname{Mat}(n, \mathbb{Z})$ eine Matrix mit $\det(A) = \pm 1$. Zeigen Sie, dass $A^{-1} \in \operatorname{Mat}(n, \mathbb{Z})$ gilt.

Aufgabe 5* (3* Punkte)

Sei $n \in \mathbb{N}_{>0}$ und seien \mathbb{K} ein Körper, $A \in \operatorname{Mat}(n, \mathbb{K})$ und χ_A das charakteristische Polynom von A. Zeigen Sie, dass die folgenden Aussagen äquivalent sind.

- (1) 0 is Eigenwert von A.
- (2) A ist nicht invertierbar.
- (3) χ_A enthält keinen konstanten Term.

Die zusammengetackerten Übungsblätter können im Postfachzimmer A16 des C-Gebäudes im 3. Stock im Briefkasten des jeweiligen Übungsleiters abgegeben werden.

Das Repetitorium findet freitags von 10-12 Uhr im Hörsaal N02 statt. Mit * gekennzeichnete Aufgaben und Punkte sind Zusatzaufgaben und -punkte.

Wir wünschen Ihnen frohe Weihnachten und einen guten Rutsch.