Prof. Hannah Markwig
4. November 2020

Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Solution - Exercise Sheet 1

Exercise 1.

Let R be a commutative ring with one. For a subset $S \subset R$ the ideal generated by S is defined as the smallest ideal of R containing S :

$$
\langle S\rangle:=\bigcap_{\substack{J \text { ideal of } R, S \subset J}} J .
$$

Show:

$$
\langle S\rangle=\left\{\sum_{i=1}^{n} \lambda_{i} s_{i} \mid n \in \mathbb{N}, \lambda_{i} \in R, s_{i} \in S \forall i \in\{1, \ldots, n\}\right\}
$$

Proof: Let $K:=\left\{\sum_{i=1}^{n} \lambda_{i} s_{i} \mid n \in \mathbb{N}, \lambda_{i} \in R, s_{i} \in S \forall i \in\{1, \ldots, n\}\right\}$. Then K is an ideal in R, since $K \neq \emptyset$, $K \subset R$ and for $x, y \in K, \lambda \in R: \exists n, m \in \mathbb{N}, \lambda_{i}, \mu_{j} \in R, s_{i}, t_{j} \in S \forall i=1 \ldots, n, j=1, \ldots, m: x=\sum_{i=1}^{n} \lambda_{i} s_{i}$, $y=\sum_{j=1}^{m} \mu_{j} t_{j}$ and thus: $x+\lambda y=\sum_{i=1}^{n} \lambda_{i} u_{i}+\sum_{j=1}^{m} \lambda \mu_{j} v_{j}$.
Therefore: $x+\lambda y \in K$. So K is an ideal in R.
Since the intersection of ideals is an ideal (the group properties are contained as well as the closure under multiplication with elements of R), i.e. $\langle S\rangle_{R}$ is also an ideal of R.
, $\subset^{\prime \prime}: S \subset K=\left\{\sum_{i=1}^{n} \lambda_{i} s_{i} \mid n \in \mathbb{N}, \lambda_{i} \in R, s_{i} \in S \forall i \in\{1, \ldots, n\}\right\}$ through $n=1, \lambda_{1}=1$. Since K is an ideal, which contains S : we have $\bigcap_{J \leq R, S \subset J} J \subset K$
$\Rightarrow\langle S\rangle_{R} \subset K$.
,, $D^{\prime \prime}$: We know that for all $x, y \in\langle S\rangle_{R}$ and $\lambda \in R$ we have $x+\lambda y \in\langle S\rangle_{R}$, because $\langle S\rangle_{R}$ is an ideal in R. In particular we have $S \subset\langle S\rangle_{R}$.
$\Rightarrow \forall n \in \mathbb{N}, \lambda_{i} \in R, s_{i} \in S \forall i=1, \ldots, n: \sum_{i=1}^{n} \lambda_{i} s_{i} \in\langle S\rangle_{R}$.
$\Rightarrow K \subset\langle S\rangle_{R}$

Exercise 2.

Let K be a field and let $R=K[x]$. Let $I=a R, J=b R \subset K[x]$ be two principal ideals. Show

$$
\begin{aligned}
& I+J=\langle\operatorname{gcd}(a, b)\rangle \\
& I \cap J=\langle\operatorname{lcm}(a, b)\rangle
\end{aligned}
$$

where gcd denotes the greatest common divisor and Icm the least common multiple.
Proof: Let $c=\operatorname{lcm}(a, b)$ and $d=\operatorname{gcd}(a, b)$.
We know that $d \mid a$ and $d \mid b$, so there exist $u, v \in R$ such that $a=u d$ and $b=v d$ thus $I=a R$ and $J=b R$ are contained in $d R=\langle\operatorname{gcd}(a, b)\rangle$. It follows that $I+J \subset\langle\operatorname{gcd}(a, b)\rangle$.
Since $R=K[x]$ is an euclidean ring, there exist $n, m \in R$ such that $d=n a+m b$. It follows that $d \in I+J$ and thus $I+J=\langle\operatorname{gcd}(a, b)\rangle$.

We know that $a \mid c$ and $b \mid c$, so there exist $u, v \in R$ such that $c=u a$ and $c=v b$ thus $I=a R$ and $J=b R$ both contain $c R=\langle\operatorname{lcm}(a, b)\rangle$. It follows that $I \cap J \supset\langle\operatorname{lcm}(a, b)\rangle$.
Let $s \in I \cap J$. Then, there exists $r_{1}, r_{2} \in R$ such that $s=a r_{1}=b r_{2}$. Since c is the least common multiple of a and b it follows that $c \mid s$ and thus there exists $t \in R$ such that $s=c t \in\langle\operatorname{lcm}(a, b)\rangle$ Hence $I \cap J=\langle\operatorname{lcm}(a, b)\rangle$.

Exercise 3.

Let R be a commutative ring with one. Let $I \subset R$ be an ideal. Show that \sqrt{I} is an ideal in R.
Proof: We have $\sqrt{I}=\left\{r \in R \mid \exists n \in \mathbb{N}\right.$ such that $\left.r^{n} \in I\right\}$. Since $0 \in I$, we know $0 \in \sqrt{I}$ so $\sqrt{I} \neq \emptyset$.

Introduction to Commutative Algebra and Algebraic Geometry Solution - Exercise Sheet 1

Let $a, b \in \sqrt{I}$ and let $\lambda \in R$. There exist $n, m \in \mathbb{N}$, such that $a^{n}, b^{m} \in I$.
Then $(\lambda a)^{n}=\lambda^{n} a^{n} \in I$ and thus $\lambda a \in \sqrt{I}$. It also follows that

$$
(a+b)^{n+m}=\sum_{i=0}^{n+m}\binom{n+m}{i} a^{i} b^{n+m-i} \in I
$$

because for each $i \in\{0, \ldots, n+m\}$ either a^{i} or b^{n+m-i} is contained in I. And thus $a+b \in \sqrt{I}$. Hence \sqrt{I} is an ideal in R.

Exercise 4.

Let $R=\mathbb{C}[x, y]$.

- Compute $\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle$, and use this to show $V\left(\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle\right)=V\left(x^{2}, y\right) \cup V(x-1, y-1)$.

Hint: Show that the two ideals are coprime and use the chinese remainder theorem.

- Make a sketch of the real part of the variety of $I_{1}=\left\langle y-x^{2}+x+4\right\rangle$ and of the variety of $I_{2}=\langle x-2\rangle$. Then compute $V\left(I_{1}+I_{2}\right)$ and verify that $V\left(I_{1}+I_{2}\right)$ is contained in the varieties of I_{1} and I_{2}.
Repeat this for $J_{1}=\left\langle y-x^{3}+3 x^{2}+x-3\right\rangle, J_{2}=\langle-y-x+3\rangle$.

Proof:

- We show first that $I:=\left\langle x^{2}, y\right\rangle$ and $J:=\langle x-1, y-1\rangle$ are coprime ideals in R : Since $y \in I$ and $y-1 \in J$ it follows that $-1=-y+y-1 \in I+J$ and thus $R=I+J$. So the ideals are coprime. By the chinese remainder theorem we know that $I \cap J=I \cdot J$.
So $\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle=\left\langle x^{3}-x^{2}, x^{2} y-x^{2}, x y-y, y^{2}-y\right\rangle$.
Next we compute the varieties $V\left(\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle\right)$ and $V\left(x^{2}, y\right)$ and $V(x-1, y-1)$. By definition this is the set of elements in \mathbb{C}^{2} for which all polynomials in the given set vanish. So $V(x-1, y-1)=\{(1,1)\}$, $V\left(x^{2}, y\right)=\{(0,0)\}$.
Also by considering the generators we see that $V\left(\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle\right)=V\left(\left\langle x^{3}-x^{2}, x^{2} y-x^{2}, x y-y, y^{2}-y\right\rangle\right)=$ $\{(0,0),(1,1)\}$.
- By Lemma 1.1 .9 we know that $V\left(I_{1}+I_{2}\right)=V\left(I_{1}\right) \cap V\left(I_{2}\right)$, so $V\left(I_{1}+I_{2}\right)=V\left(y-x^{2}+x+4\right) \cap V(x-2)$. We know $V(x-2)=\{(2, b) \mid b \in \mathbb{C}\}$. So to compute the intersection we can simply set $x=2$ into $y-x^{2}+x+4$ and compute its zero set: $y=2^{2}-2-4=-2$ so $V\left(I_{1}+I_{2}\right)=\{(2,-2)\}$. It is easy to verify that this is contained in the varieties $V\left(I_{1}\right)$ and $V\left(I_{2}\right)$: for $x=2, y=-2$ we have $x-2=0$ and $y-x^{2}+x+4=0$.

By Lemma 1.1.9 we know that $V\left(J_{1}+J_{2}\right)=V\left(J_{1}\right) \cap V\left(J_{2}\right)$, so $V\left(J_{1}+J_{2}\right)=V\left(y-x^{3}+3 x^{2}+x-\right.$ 3) $\cap V(-y-x+3)$.

To compute the intersection we can set $y=3-x$ into $y-x^{3}+3 x^{2}+x-3$ and compute its zero set. So we need to solve for x : $3-x=x^{3}-3 x^{2}-x+3 \Leftrightarrow 0=x^{3}-3 x^{2}$. So $V\left(J_{1}+J_{2}\right)=\{(0,3),(3,0)\}$.
It is easy to verify that this is contained in the varieties $V\left(J_{1}\right)$ and $V\left(J_{2}\right)$: for $x=0, y=3$ we have $y-x^{3}+3 x^{2}+x-3=0$ and $-y-x+3=0$ as well as for $x=3, y=0$.

Introduction to Commutative Algebra and Algebraic Geometry Solution - Exercise Sheet 1

Abbildung 1: $y=x^{2}-x-4$

Abbildung 2: $x-2=0$

$$
\text { Abbildung 3: } y-x^{3}+3 x^{2}+x-3=0
$$

Abbildung 4: $-y-x+3=0$

