Introduction to Commutative Algebra and Algebraic Geometry Solution - Exercise Sheet 1

Exercise 1.

Let R be a commutative ring with one. For a subset $S \subset R$ the ideal generated by S is defined as the smallest ideal of R containing S:

$$\langle S \rangle := \bigcap_{J \text{ ideal of } R, \\ S \subset J} J.$$

Show:

$$\langle S \rangle = \{ \sum_{i=1}^{n} \lambda_i s_i \mid n \in \mathbb{N}, \, \lambda_i \in R, \, s_i \in S \, \forall i \in \{1, ..., n\} \}.$$

Proof: Let $K := \{\sum_{i=1}^{n} \lambda_i s_i \mid n \in \mathbb{N}, \lambda_i \in R, s_i \in S \forall i \in \{1, ..., n\}\}$. Then K is an ideal in R, since $K \neq \emptyset$, $K \subset R$ and for $x, y \in K, \lambda \in R$: $\exists n, m \in \mathbb{N}, \lambda_i, \mu_j \in R, s_i, t_j \in S \forall i = 1, ..., n, j = 1, ..., m$: $x = \sum_{i=1}^{n} \lambda_i s_i, y = \sum_{j=1}^{m} \mu_j t_j$ and thus: $x + \lambda y = \sum_{i=1}^{n} \lambda_i u_i + \sum_{j=1}^{m} \lambda \mu_j v_j$. Therefore: $x + \lambda y \in K$. So K is an ideal in R.

Since the intersection of ideals is an ideal (the group properties are contained as well as the closure under multiplication with elements of R), i.e. $\langle S \rangle_R$ is also an ideal of R.

"⊂": $S \subset K = \{\sum_{i=1}^{n} \lambda_i s_i \mid n \in \mathbb{N}, \lambda_i \in R, s_i \in S \forall i \in \{1, ..., n\}\}$ through $n = 1, \lambda_1 = 1$. Since K is an ideal, which contains S: we have $\bigcap_{J \leq R, S \subset J} J \subset K$ $\Rightarrow \langle S \rangle_R \subset K$.

" \supset ": We know that for all $x, y \in \langle S \rangle_R$ and $\lambda \in R$ we have $x + \lambda y \in \langle S \rangle_R$, because $\langle S \rangle_R$ is an ideal in R. In particular we have $S \subset \langle S \rangle_R$. $\Rightarrow \forall n \in \mathbb{N}, \lambda_i \in R, s_i \in S \forall i = 1, ..., n : \sum_{i=1}^n \lambda_i s_i \in \langle S \rangle_R$. $\Rightarrow K \subset \langle S \rangle_R$

Exercise 2.

Let K be a field and let R = K[x]. Let I = aR, $J = bR \subset K[x]$ be two principal ideals. Show

$$I + J = \langle \mathsf{gcd}(a, b) \rangle$$
$$I \cap J = \langle \mathsf{lcm}(a, b) \rangle,$$

where gcd denotes the greatest common divisor and lcm the least common multiple.

Proof: Let c = lcm(a, b) and d = gcd(a, b).

We know that d|a and d|b, so there exist $u, v \in R$ such that a = ud and b = vd thus I = aR and J = bR are contained in $dR = \langle \gcd(a, b) \rangle$. It follows that $I + J \subset \langle \gcd(a, b) \rangle$. Since R = K[x] is an euclidean ring, there exist $n, m \in R$ such that d = na + mb. It follows that $d \in I + J$ and thus $I + J = \langle \gcd(a, b) \rangle$.

We know that a|c and b|c, so there exist $u, v \in R$ such that c = ua and c = vb thus I = aR and J = bR both contain $cR = \langle \text{lcm}(a, b) \rangle$. It follows that $I \cap J \supset \langle \text{lcm}(a, b) \rangle$.

Let $s \in I \cap J$. Then, there exists $r_1, r_2 \in R$ such that $s = ar_1 = br_2$. Since c is the least common multiple of a and b it follows that c|s and thus there exists $t \in R$ such that $s = ct \in \langle \operatorname{lcm}(a, b) \rangle$. Hence $I \cap J = \langle \operatorname{lcm}(a, b) \rangle$. \Box

Exercise 3.

Let R be a commutative ring with one. Let $I \subset R$ be an ideal. Show that \sqrt{I} is an ideal in R.

Proof: We have $\sqrt{I} = \{r \in R | \exists n \in \mathbb{N} \text{ such that } r^n \in I\}$. Since $0 \in I$, we know $0 \in \sqrt{I}$ so $\sqrt{I} \neq \emptyset$.

Introduction to Commutative Algebra and Algebraic Geometry Solution - Exercise Sheet 1

Let $a, b \in \sqrt{I}$ and let $\lambda \in R$. There exist $n, m \in \mathbb{N}$, such that $a^n, b^m \in I$. Then $(\lambda a)^n = \lambda^n a^n \in I$ and thus $\lambda a \in \sqrt{I}$. It also follows that

$$(a+b)^{n+m} = \sum_{i=0}^{n+m} \binom{n+m}{i} a^i b^{n+m-i} \in I,$$

because for each $i \in \{0, ..., n+m\}$ either a^i or b^{n+m-i} is contained in I. And thus $a+b \in \sqrt{I}$. Hence \sqrt{I} is an ideal in R.

Exercise 4.

Let $R = \mathbb{C}[x, y]$.

• Compute $\langle x^2, y \rangle \cap \langle x-1, y-1 \rangle$, and use this to show $V(\langle x^2, y \rangle \cap \langle x-1, y-1 \rangle) = V(x^2, y) \cup V(x-1, y-1)$.

Hint: Show that the two ideals are coprime and use the chinese remainder theorem.

• Make a sketch of the real part of the variety of $I_1 = \langle y - x^2 + x + 4 \rangle$ and of the variety of $I_2 = \langle x - 2 \rangle$. Then compute $V(I_1 + I_2)$ and verify that $V(I_1 + I_2)$ is contained in the varieties of I_1 and I_2 . Repeat this for $J_1 = \langle y - x^3 + 3x^2 + x - 3 \rangle$, $J_2 = \langle -y - x + 3 \rangle$.

Proof:

• We show first that $I := \langle x^2, y \rangle$ and $J := \langle x - 1, y - 1 \rangle$ are coprime ideals in R: Since $y \in I$ and $y - 1 \in J$ it follows that $-1 = -y + y - 1 \in I + J$ and thus R = I + J. So the ideals are coprime. By the chinese remainder theorem we know that $I \cap J = I \cdot J$.

 $\mathsf{So}\ \langle x^2,y\rangle\cap\langle x-1,y-1\rangle=\langle x^3-x^2,x^2y-x^2,xy-y,y^2-y\rangle.$

Next we compute the varieties $V(\langle x^2, y \rangle \cap \langle x - 1, y - 1 \rangle)$ and $V(x^2, y)$ and V(x - 1, y - 1). By definition this is the set of elements in \mathbb{C}^2 for which all polynomials in the given set vanish. So $V(x - 1, y - 1) = \{(1, 1)\}$, $V(x^2, y) = \{(0, 0)\}$.

Also by considering the generators we see that $V(\langle x^2, y \rangle \cap \langle x-1, y-1 \rangle) = V(\langle x^3-x^2, x^2y-x^2, xy-y, y^2-y \rangle) = \{(0,0), (1,1)\}.$

• By Lemma 1.1.9 we know that $V(I_1 + I_2) = V(I_1) \cap V(I_2)$, so $V(I_1 + I_2) = V(y - x^2 + x + 4) \cap V(x - 2)$. We know $V(x-2) = \{(2,b) | b \in \mathbb{C}\}$. So to compute the intersection we can simply set x = 2 into $y - x^2 + x + 4$ and compute its zero set: $y = 2^2 - 2 - 4 = -2$ so $V(I_1 + I_2) = \{(2, -2)\}$. It is easy to verify that this is contained in the varieties $V(I_1)$ and $V(I_2)$: for x = 2, y = -2 we have x - 2 = 0 and $y - x^2 + x + 4 = 0$.

By Lemma 1.1.9 we know that $V(J_1 + J_2) = V(J_1) \cap V(J_2)$, so $V(J_1 + J_2) = V(y - x^3 + 3x^2 + x - 3) \cap V(-y - x + 3)$.

To compute the intersection we can set y = 3 - x into $y - x^3 + 3x^2 + x - 3$ and compute its zero set. So we need to solve for $x: 3 - x = x^3 - 3x^2 - x + 3 \Leftrightarrow 0 = x^3 - 3x^2$. So $V(J_1 + J_2) = \{(0,3), (3,0)\}$.

It is easy to verify that this is contained in the varieties $V(J_1)$ and $V(J_2)$: for x = 0, y = 3 we have $y - x^3 + 3x^2 + x - 3 = 0$ and -y - x + 3 = 0 as well as for x = 3, y = 0.

Eberhard-Karls-Universität Tübingen Prof. Hannah Markwig Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Solution - Exercise Sheet 1

Abbildung 1: $y = x^2 - x - 4$

Abbildung 2: x - 2 = 0

Abbildung 3: $y - x^3 + 3x^2 + x - 3 = 0$

Abbildung 4: -y - x + 3 = 0