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Exercise 1.
Let R be a commutative ring with one. For a subset S ⊂ R the ideal generated by S is defined as the smallest ideal
of R containing S:

〈S〉 :=
⋂

J ideal of R,
S⊂J

J.

Show:

〈S〉 = {
n∑

i=1

λisi | n ∈ N, λi ∈ R, si ∈ S ∀i ∈ {1, ..., n}}.

Proof: Let K := {
∑n

i=1 λisi | n ∈ N, λi ∈ R, si ∈ S ∀i ∈ {1, ..., n}}. Then K is an ideal in R, since K 6= ∅,
K ⊂ R and for x, y ∈ K,λ ∈ R: ∃n,m ∈ N, λi, µj ∈ R, si, tj ∈ S ∀i = 1..., n, j = 1, ...,m: x =

∑n
i=1 λisi,

y =
∑m

j=1 µjtj and thus: x+ λy =
∑n

i=1 λiui +
∑m

j=1 λµjvj .
Therefore: x+ λy ∈ K. So K is an ideal in R.

Since the intersection of ideals is an ideal (the group properties are contained as well as the closure under multi-
plication with elements of R), i.e. 〈S〉R is also an ideal of R.

„⊂“: S ⊂ K = {
∑n

i=1 λisi | n ∈ N, λi ∈ R, si ∈ S ∀i ∈ {1, ..., n}} through n = 1, λ1 = 1. Since K is an
ideal, which contains S: we have

⋂
J≤R,S⊂J J ⊂ K

⇒ 〈S〉R ⊂ K.

„⊃“: We know that for all x, y ∈ 〈S〉R and λ ∈ R we have x + λy ∈ 〈S〉R, because 〈S〉R is an ideal in R. In
particular we have S ⊂ 〈S〉R.
⇒ ∀n ∈ N, λi ∈ R, si ∈ S ∀i = 1, ..., n :

∑n
i=1 λisi ∈ 〈S〉R.

⇒ K ⊂ 〈S〉R �

Exercise 2.
Let K be a field and let R = K[x]. Let I = aR, J = bR ⊂ K[x] be two principal ideals. Show

I + J = 〈gcd(a, b)〉

I ∩ J = 〈lcm(a, b)〉,

where gcd denotes the greatest common divisor and lcm the least common multiple.

Proof: Let c = lcm(a, b) and d = gcd(a, b).
We know that d|a and d|b, so there exist u, v ∈ R such that a = ud and b = vd thus I = aR and J = bR are
contained in dR = 〈gcd(a, b)〉. It follows that I + J ⊂ 〈gcd(a, b)〉.
Since R = K[x] is an euclidean ring, there exist n,m ∈ R such that d = na+mb. It follows that d ∈ I + J and thus
I + J = 〈gcd(a, b)〉.

We know that a|c and b|c, so there exist u, v ∈ R such that c = ua and c = vb thus I = aR and J = bR
both contain cR = 〈lcm(a, b)〉. It follows that I ∩ J ⊃ 〈lcm(a, b)〉.
Let s ∈ I ∩ J . Then, there exists r1, r2 ∈ R such that s = ar1 = br2. Since c is the least common multiple of a and
b it follows that c|s and thus there exists t ∈ R such that s = ct ∈ 〈lcm(a, b)〉 Hence I ∩ J = 〈lcm(a, b)〉. �

Exercise 3.
Let R be a commutative ring with one. Let I ⊂ R be an ideal. Show that

√
I is an ideal in R.

Proof: We have
√
I = {r ∈ R|∃n ∈ Nsuch thatrn ∈ I}. Since 0 ∈ I, we know 0 ∈

√
I so

√
I 6= ∅.
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Let a, b ∈
√
I and let λ ∈ R. There exist n,m ∈ N, such that an, bm ∈ I.

Then (λa)n = λnan ∈ I and thus λa ∈
√
I. It also follows that

(a+ b)n+m =

n+m∑
i=0

(
n+m

i

)
aibn+m−i ∈ I,

because for each i ∈ {0, ..., n+m} either ai or bn+m−i is contained in I. And thus a+ b ∈
√
I. Hence

√
I is an ideal

in R. �

Exercise 4.
Let R = C[x, y].

• Compute 〈x2, y〉 ∩ 〈x− 1, y− 1〉, and use this to show V (〈x2, y〉 ∩ 〈x− 1, y− 1〉) = V (x2, y)∪V (x− 1, y− 1).

Hint: Show that the two ideals are coprime and use the chinese remainder theorem.

• Make a sketch of the real part of the variety of I1 = 〈y − x2 + x+ 4〉 and of the variety of I2 = 〈x− 2〉. Then
compute V (I1 + I2) and verify that V (I1 + I2) is contained in the varieties of I1 and I2.
Repeat this for J1 = 〈y − x3 + 3x2 + x− 3〉, J2 = 〈−y − x+ 3〉.

Proof:

• We show first that I := 〈x2, y〉 and J := 〈x− 1, y − 1〉 are coprime ideals in R: Since y ∈ I and y − 1 ∈ J it
follows that −1 = −y+ y− 1 ∈ I+J and thus R = I+J . So the ideals are coprime. By the chinese remainder
theorem we know that I ∩ J = I · J .
So 〈x2, y〉 ∩ 〈x− 1, y − 1〉 = 〈x3 − x2, x2y − x2, xy − y, y2 − y〉.
Next we compute the varieties V (〈x2, y〉 ∩ 〈x− 1, y − 1〉) and V (x2, y) and V (x− 1, y − 1). By definition this
is the set of elements in C2 for which all polynomials in the given set vanish. So V (x − 1, y − 1) = {(1, 1)},
V (x2, y) = {(0, 0)}.
Also by considering the generators we see that V (〈x2, y〉∩〈x−1, y−1〉) = V (〈x3−x2, x2y−x2, xy−y, y2−y〉) =
{(0, 0), (1, 1)}.

• By Lemma 1.1.9 we know that V (I1 + I2) = V (I1) ∩ V (I2), so V (I1 + I2) = V (y − x2 + x+ 4) ∩ V (x− 2).
We know V (x−2) = {(2, b)|b ∈ C}. So to compute the intersection we can simply set x = 2 into y−x2+x+4
and compute its zero set: y = 22 − 2 − 4 = −2 so V (I1 + I2) = {(2,−2)}. It is easy to verify that this is
contained in the varieties V (I1) and V (I2): for x = 2, y = −2 we have x− 2 = 0 and y − x2 + x+ 4 = 0.

By Lemma 1.1.9 we know that V (J1 + J2) = V (J1) ∩ V (J2), so V (J1 + J2) = V (y − x3 + 3x2 + x −
3) ∩ V (−y − x+ 3).
To compute the intersection we can set y = 3− x into y − x3 + 3x2 + x− 3 and compute its zero set. So we
need to solve for x: 3− x = x3 − 3x2 − x+ 3⇔ 0 = x3 − 3x2. So V (J1 + J2) = {(0, 3), (3, 0)}.
It is easy to verify that this is contained in the varieties V (J1) and V (J2): for x = 0, y = 3 we have
y − x3 + 3x2 + x− 3 = 0 and −y − x+ 3 = 0 as well as for x = 3, y = 0.
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Abbildung 1: y = x2 − x− 4

Abbildung 2: x− 2 = 0

Abbildung 3: y − x3 + 3x2 + x− 3 = 0

Abbildung 4: −y − x+ 3 = 0


