Prof. Hannah Markwig

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 1

Exercise 1.

Let R be a commutative ring with one. For a subset $S \subset R$ the ideal generated by S is defined as the smallest ideal of R containing S :

$$
\langle S\rangle:=\bigcap_{\substack{J \text { ideal of } R, S \subset J}} J .
$$

Show:

$$
\langle S\rangle=\left\{\sum_{i=1}^{n} \lambda_{i} s_{i} \mid n \in \mathbb{N}, \lambda_{i} \in R, s_{i} \in S \forall i \in\{1, \ldots, n\}\right\} .
$$

Exercise 2.

Let K be a field and let $R=K[x]$. Let $I=a R, J=b R \subset K[x]$ be two principal ideals. Show

$$
\begin{aligned}
& I+J=\langle\operatorname{gcd}(a, b)\rangle \\
& I \cap J=\langle\operatorname{lcm}(a, b)\rangle
\end{aligned}
$$

where gcd denotes the greatest common divisor and Icm the least common multiple.

Exercise 3.

Let R be a commutative ring with one. Let $I \subset R$ be an ideal. Show that \sqrt{I} is an ideal in R.

Exercise 4.

Let $R=\mathbb{C}[x, y]$.

- Compute $\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle$, and use this to show $V\left(\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle\right)=V\left(x^{2}, y\right) \cup V(x-1, y-1)$.

Hint: Show that the two ideals are coprime and use the chinese remainder theorem.

- Make a sketch of the real part of the variety of $I_{1}=\left\langle y-x^{2}+x+4\right\rangle$ and of the variety of $I_{2}=\langle x-2\rangle$. Then compute $V\left(I_{1}+I_{2}\right)$ and verify that $V\left(I_{1}+I_{2}\right)$ is contained in the varieties of I_{1} and I_{2}.
Repeat this for $I_{1}=\left\langle y-x^{3}+3 x^{2}+x-3\right\rangle, I_{2}=\langle-y-x+3\rangle$.

[^0]
[^0]: Submission: In groups of up to three students, until Wednesday, 11. November 2020, 12:00 o'clock via URM. You are allowed to submit your solutions in German.

