Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 10

Exercise 1.

Let K be an algebraically closed field and let X be an affine variety. Let $f: X \rightarrow K$ be a map. Prove that the following statements are equivalent:
(i) $f \in \mathcal{O}_{X}(X)$.
(ii) $f: X \rightarrow K$ is a morphism.

Proof: ,,(i) \Rightarrow (ii)": We have to show that $\forall V \subset K, h \in \mathcal{O}_{K}(V)$ we have $h \circ f \in \mathcal{O}_{X}\left(f^{-1}(V)\right)$. It suffices to prove this for basis open sets $V=D(g)$ with $g \in K[t]$.
We prove that for $V=D(g)$ we have $\mathcal{O}_{X}\left(f^{-1}(V)\right)=\mathcal{O}_{X}(D(g \circ f))$. This holds because

$$
f(x) \in V(g) \Leftrightarrow g \circ f=0
$$

and so

$$
f^{-1}(D(g))=\{x \in X \mid g \circ f \neq 0\}=D(g \circ f)
$$

So $\mathcal{O}_{X}\left(f^{-1}(V)\right)=\mathcal{O}_{X}(D(g \circ f))=K[X]_{g \circ f}$.
For $V=D(g)$ we have $\mathcal{O}_{K}(V)=K[t]_{g}$ and any $h \in \mathcal{O}_{K}(V)$ is of the form $h=\frac{h^{\prime}}{g^{r}}$ for some $h^{\prime} \in K[t], r \in \mathbb{N}$.
Also since $f \in \mathcal{O}_{X}(X)=K[X]$ and $g, h \in K[t]$ we have $h \circ f, g \circ f \in K[X]$ (follows from the definition).
Combined it follows that for any $h \in \mathcal{O}_{K}(V)$ we have $h \circ f=\frac{h^{\prime} \circ f}{(g \circ f)^{r}} \in K[X]_{g \circ f}=\mathcal{O}_{X}\left(f^{-1}(V)\right)$.
,(ii) \Rightarrow (i)": Since f is a morphism, we know that for all open sets $V \subset K, g \in \mathcal{O}_{K}(V)$ we have $g \circ f \in \mathcal{O}_{X}\left(f^{-1}(V)\right)$. Choosing $V=K$ and $g=i d$ we obtain $f=i d \circ f \in \mathcal{O}_{X}\left(f^{-1}(K)\right)=\mathcal{O}_{X}(X)$.

Exercise 2.

Let X be an affine variety and \mathcal{F} its sheaf of regular functions. Let $U \subset X$ be an open set.
Let $s \in \mathcal{F}(U)$ be an element with $s_{x}=0 \in \mathcal{F}_{x}$ for all $x \in U$. Show: $s=0$.
Proof: We fix $x \in U$. Since $s_{x} \in \mathcal{F}_{x}$ is an equivalence class, $s_{x}=0$ is an equation of equivalence classes in \mathcal{F}_{x}. This means that there exists two open neighbourhoods of $x \in U$, say U^{\prime} and $U^{\prime \prime}$ such that $s \in \mathcal{F}\left(U^{\prime}\right)$ and $0 \in \mathcal{F}\left(U^{\prime \prime}\right)$ and such that there exists an open neighbourhood $x \in V \subset U^{\prime} \cap U^{\prime \prime}$ with $s_{\mid V}=0_{\left.\right|_{V}}$. This implies in particular that $s(x)=0$.
We had $x \in U$ fixed, but since $s_{x}=0 \in \mathcal{F}_{x}$ for all $x \in U$ it follows that $s_{U}=0$ and since s is a regular function on $U(s \in \mathcal{F}(U))$, we have $s=s_{\left.\right|_{U}}=0$.

Exercise 3.

Let K be an algebraically closed field with $\operatorname{char}(K)=0$. Consider the map from the affine line \mathbb{A}_{K}^{1} to the curve $C=V\left(y^{2}-x^{3}\right)$ given by $\phi: \mathbb{A}_{K}^{1} \rightarrow C, t \mapsto\left(t^{2}, t^{3}\right)$. Prove ϕ is a morphism and a homeomorphism (i.e. bijective, continuous and open).

Solution: We have $\phi: \mathbb{A}_{K}^{1} \rightarrow C, t \mapsto\left(t^{2}, t^{3}\right)$. Since ϕ is polynomial, it follows that ϕ is a morphism (3.3.5) and continuous (1.6.2). Furthermore, ϕ is surjective, since for any point $p=(a, b) \in C$ we can choose $t=\sqrt{a}$. Then $\left(t^{2}, t^{3}\right)=\left(a, \sqrt{a}^{3}\right)=(a, b)$ since $b^{2}=a^{3}$ so $b=\sqrt{a^{3}}=\sqrt{a}^{3}$.
Also ϕ is injective, since for $\left(t^{2}, t^{3}\right)=\left(q^{2}, q^{3}\right)$ we have $t= \pm q$ (since $t^{2}=q^{2}$) and if $t=-q$ it follows that $t^{3}=-q^{3} \neq q^{3}$ except for $q=0$. So $\left(t^{2}, t^{3}\right)=\left(q^{2}, q^{3}\right)$ implies $t=q$.
It remains to show that ϕ is open. Equivalently to proving ϕ is open, we can show that ϕ is closed, i.e. that for closed subsets $V \subset K=\mathbb{A}_{K}^{1}$ the image $\phi(V)$ is closed in C. The closed sets in K are K, \emptyset and any finite number of points. For these the images under ϕ are $\phi(K)=C, \phi(\emptyset)=\emptyset$ and $\phi\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=\left\{\phi\left(a_{1}\right), \ldots, \phi\left(a_{n}\right)\right\}$. Since C and \emptyset are closed in the subspace topology $C \subset K^{2}$, it remains to consider the sets of finitely many points. In K^{2} any finite number of points is a closed subset, so sets of finitely many points in C are closed in C.

