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Exercise 1.
Let K be an algebraically closed field and let X be an affine variety. Let f : X — K be a map. Prove that the
following statements are equivalent:

(i) f€O0x(X).
(i) f:X — K is a morphism.

Exercise 2.
Let X be an affine variety and F its sheaf of regular functions. Let U C X be an open set.
Let s € F(U) be an element with s, =0 € F,, for all z € U. Show: s = 0.

Exercise 3.

Let K be an algebraically closed field with char(K) = 0. Consider the map from the affine line Al to the curve
C = V(y* — %) given by ¢ : AL — C,t — (2,¢3). Prove ¢ is a morphism and a homeomorphism (i.e. bijective,
continuous and open).
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