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Exercise 1.

Let K be an algebraically closed �eld and let X be an a�ne variety. Let f : X → K be a map. Prove that the
following statements are equivalent:

(i) f ∈ OX(X).

(ii) f : X → K is a morphism.

Exercise 2.

Let X be an a�ne variety and F its sheaf of regular functions. Let U ⊂ X be an open set.
Let s ∈ F(U) be an element with sx = 0 ∈ Fx for all x ∈ U . Show: s = 0.

Exercise 3.

Let K be an algebraically closed �eld with char(K) = 0. Consider the map from the a�ne line A1
K to the curve

C = V (y2 − x3) given by φ : A1
K → C, t 7→ (t2, t3). Prove φ is a morphism and a homeomorphism (i.e. bijective,

continuous and open).
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