## Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 11

## Exercise 1.

For a ring extension $R^{\prime} \supset R$, we say $\alpha \in R^{\prime}$ is integral over $R$, if there exists $f \in R[x] \backslash\{0\}$ with $f(\alpha)=0$ and $\mathrm{LC}(f)=1$.
$R^{\prime}$ is called integral over $R$ if $\forall \alpha \in R^{\prime}: \alpha$ is integral over $R$.
Let $K$ be a field. Let $R$ be a finitely generated $K$-algebra without zero divisors and let $\beta_{1}, \ldots, \beta_{d} \in R \subset$ Quot $(R)$.
Prove: If $R$ is integral over $K\left[\beta_{1}, \ldots, \beta_{d}\right]$, then Quot $(R)$ is algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$.
Solution: Let $\beta_{1}, \ldots, \beta_{d} \in R$ be algebraically independent over $K$ and let $R$ be integral over $K\left[\beta_{1}, \ldots, \beta_{d}\right]$.
Let $r \in R \backslash\{0\}$ be an arbitrary element. Since $R$ is integral over $K\left[\beta_{1}, \ldots, \beta_{d}\right]$, there exists $f=\sum_{i=0}^{m} c_{i} x^{i} \in$ $K\left[\beta_{1}, \ldots, \beta_{d}\right][x] \backslash\{0\}$ such that $f(r)=0, c_{m}=1$.
Define $g:=\sum_{i=0}^{m} c_{m-i} x^{i} \in K\left[\beta_{1}, \ldots, \beta_{d}\right][x]$. Then $g \neq 0$ and

$$
\begin{aligned}
r^{m} \cdot g\left(\frac{1}{r}\right) & =r^{m} \sum_{i=0}^{m} c_{m-i}\left(\frac{1}{r}\right)^{i} \\
& =\sum_{i=0}^{m} c_{m-i} r^{m-i} \\
& =\sum_{i=0}^{m} c_{i} r^{i} \\
& =f(r) \\
& =0
\end{aligned}
$$

Since $R$ contains no zero divisors, it follows that $g\left(\frac{1}{r}\right)=0$.
$\Rightarrow \frac{1}{r}$ is algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$.
$\Rightarrow$ Quot $(R)$ is algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$.
Exercise 2 (Semicontinuity of the dimension).
Let $X$ be an affine variety with irreducible components $X_{1}, \ldots, X_{r}$. For $x \in X$ we set

$$
\operatorname{dim}\left(X_{x}\right):=\max \left\{\operatorname{dim}\left(X_{i}\right): 1 \leq i \leq r, x \in X_{i}\right\}
$$

Prove: The function $X \rightarrow Z, x \mapsto \operatorname{dim}\left(X_{x}\right)$ is upper semicontinuous, i.e., $\forall x \in X$ there is an open neighbourhood $U \subset X$ with $\operatorname{dim}\left(X_{u}\right) \leq \operatorname{dim}\left(X_{x}\right)$ for all $u \in U$.

Proof: Write $X=X_{1} \cup \ldots \cup X_{r}$. Let $x \in X$ be arbitrary. Then there exist $i_{1}, \ldots, i_{k}$ such that $x \in X_{i_{j}}, j \in\{1, \ldots, k\}$ and $x \notin X_{i}$ with $i \notin\left\{i_{1}, \ldots, i_{k}\right\}$.
Let $X_{i_{1}}$ be the irreducible component of the largest dimension that contains $x$, so $\operatorname{dim}\left(X_{x}\right)=\operatorname{dim}\left(X_{i_{1}}\right)$.
In case that there exists $i \notin\left\{i_{1}, \ldots, i_{k}\right\}$, we choose $U=X_{i_{1}} \backslash\left(\bigcup_{i \in\{1, \ldots, r\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}} X_{i}\right.$. Then $x \in U$ and $U$ is open. Moreover, for all elements $u \in U$ we have $\operatorname{dim}\left(X_{u}\right)=\operatorname{dim}\left(X_{i_{1}}\right)=\operatorname{dim}\left(X_{x}\right)$.
If otherwise $\left\{i_{1}, \ldots, i_{k}\right\}=\{1, \ldots, r\}$, then we choose any $U \subset X$ open with $x \in U$ and we obtain: $\operatorname{dim}\left(X_{u}\right)=$ $\operatorname{dim}\left(X_{i_{1}}\right)=\operatorname{dim}\left(X_{x}\right)$, since $X_{i_{1}}$ was the irreducible component of the largest dimension that contains $x$.

## Exercise 3.

a) Determine the field of rational functions and the dimension of the cuspidal cubic $X=V\left(x^{2}-y^{3}\right) \subset K^{2}$.

Solution: We know from Exercise Sheet 3, exercise 2, that the coordinate ring of $X$ is

$$
K[X]=K[x, y] /\left\langle x^{2}-y^{3}\right\rangle \cong K\left[t^{2}, t^{3}\right]
$$

Prof. Hannah Markwig
Alheydis Geiger

## Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 11

Now $t=\frac{t^{3}}{t^{2}} \in \operatorname{Quot}\left(K\left[t^{2}, t^{3}\right]\right)$, so $\operatorname{Quot}\left(K\left[t^{2}, t^{3}\right]\right)=\operatorname{Quot}(K[t])=K(t)$.
Therefore the dimension of the cuspidal cubic is

$$
\operatorname{dim}(X)=\operatorname{trdeg}_{K}\left(\operatorname{Quot}\left(K\left[t^{2}, t^{3}\right]\right)\right)=\operatorname{trdeg}_{K}(\operatorname{Quot}(K(t)))=1
$$

b) Let $U$ be a $d$-dimensional vector subspace of $K^{n}$. Determine the dimension of $U$ as an affine variety in $K^{n}$ and compare it to the dimension of $U$ as a $K$ vector space.

Solution: Let $v_{1}, \ldots, v_{d}$ be a basis of $U \subset K^{n}$ as $K$-vector space. We extend this to a basis of $K^{n} v_{1}, . ., v_{n}$. With the change of coordinates $K^{n} \rightarrow K^{n}$ via $\left(e_{1}, \ldots, e_{n}\right) \rightarrow\left(v_{1}, . ., v_{d}, v_{d+1}, \ldots, v_{n}\right)$ we can write $U$ as the image of $\left(\begin{array}{cc}\mathbf{1}_{d} & 0 \\ 0 & 0\end{array}\right)$.
This map, which is an isomorphism of affine varieties, since it is linear, together with $K\left[K^{n}\right]=K\left[x_{1}, \ldots, x_{n}\right]$ implies that $I(U)=\left\langle x_{d+1}, \ldots, x_{n}\right\rangle$. Then $K[U]=K\left[x_{1}, \ldots, x_{n}\right] / I(U) \cong K\left[x_{1}, \ldots, x_{d}\right]$. So $\operatorname{dim}(U)=\operatorname{trdeg}_{K}\left(K\left(x_{1}, \ldots, x_{d}\right)\right)=d$.
This is the same as the $K$-vector space dimension of $U$.

