Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 12

Exercise 1.

Let K bei an algebraically closed field, $f, g \in K\left[x_{1}, \ldots, x_{n}\right], V(f, g) \subset K^{n}$. Prove the equivalence of the following statements:
(i) $\operatorname{gcd}(f, g)=1$.
(ii) $\operatorname{dim}(V(f, g)) \leq n-2$.

Proof: (i) \Rightarrow (ii): Assume $\operatorname{dim}(V(f, g))>n-2$. If $\operatorname{dim}(V(f, g))=n$, then $f=g=0$ (otherwise $V(f, g) \subset V(f)$ where w.l.o.g f not constant and thus $\operatorname{dim}(V(f, g)) \leq n-1)$. It follows $\operatorname{gcd}(f, g)=\operatorname{gcd}(0,0)=0 \neq 1$.
If $\operatorname{dim}(V(f, g))=n-1$, either both f and g have to be not-constant or one of f and g is zero and the other not-constant. In the case one of f and $g=0$, we can assume w.l.o.g. $g=0$. Then we have $V(f, g)=V(f)$ and $g c d(f, 0)=f \neq 1$, since f is not constant. Otherweise, f, g are both not constant. Then $V(f, g)$ it is a union of irreducible components and with at least one of these components of dimension $n-1$. This component is then a hypersurface $V(p)$ by by 4.1.13 with p non-constant. So $V(p) \subset V(f, g)$. It follows that $f, g \in\langle p\rangle$ so p divides the gcd of f and $g: \operatorname{gcd}(f, g) \neq 1$.
(ii) \Rightarrow (i): We assume $\operatorname{gcd}(f, g) \neq 1$. It follows that either $f=g=0$ or f and g are bot not constant. If $f=g=0$ it follows that $\operatorname{dim}(V(f, g))=\operatorname{dim}\left(K^{n}\right)=n$. If both f, g are not constant, we assume $p=\operatorname{gcd}(f, g)$ is not constant. Then $\langle f, g\rangle \subset\langle p\rangle$ so $V(f, g) \supset V(p)$ and $V(p)$ is a hpyersurface and thus of dimension $n-1$ by 4.1.12. So $\operatorname{dim}(V(f, g)) \geq n-1$.

Exercise 2.

Show that the statement from Theorem 4.2.1 2) does not generally hold if K is not algebraically closed.
For this consider $K=\mathbb{R}$ and $X=Y=K$ and $\varphi: X \rightarrow Y, t \mapsto t^{2}$ and the ideal $J=\left\langle x^{2}+1\right\rangle \subset K[x]$.
Solution: Recall the statement from Theorem 4.2.1 2): Let $\varphi: X \rightarrow Y$ be a morphism of algebraic varieties, $\varphi^{*}: \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}$. If $J \subset \mathcal{O}_{X}(X)$ is an ideal and $A=V(J) \subset X$, then $\overline{\phi(A)}=V\left(\left(\varphi^{*}\right)^{-1}(J)\right) \subset Y$, $I(\varphi(A))=\left(\varphi^{*}\right)^{-1}(\sqrt{J})$.
 compute $\overline{\phi(V(J))}$ and $V\left(\left(\varphi^{*}\right)^{-1}(J)\right)$.
Since $K=\mathbb{R}$ we have $V\left(x^{2}+1\right)=\emptyset$. So $\overline{\phi(V(J))}=\emptyset$.
We know that $\varphi^{*}: K[y] \rightarrow K[x], y \mapsto x^{2}$. So $V\left(\left(\varphi^{*}\right)^{-1}(J)\right)=V(\langle y+1\rangle)$.
Now $\emptyset \neq V(\langle y+1\rangle)$.
Further we need to compute $I(\varphi(V(J)))$ and $\left(\varphi^{*}\right)^{-1}(\sqrt{J})$.
We have $\varphi(V(J))=\varphi(\emptyset)=\emptyset$. Now $I(\emptyset)$ are all those polynomials in $\mathbb{R}[y]$ that vanish everywhere in \emptyset. So $I(\emptyset)=\mathbb{R}[y]$. Since $J=\left\langle x^{2}+1\right\rangle$ is a prime ideal over $\mathbb{R}[x]$ it is radical, so $\left(\varphi^{*}\right)^{-1}(\sqrt{J})=\langle y+1\rangle$.
We see $\mathbb{R}[y] \neq\langle y+1\rangle$.
So the statement of Theorem 4.2.12) does in general not hold, if K is not algebraically closed.

Exercise 3.

Determine the number of irreducible components, the dimension and the ring of regular functions for every fibre of the following morphisms:
(i) $\varphi: K^{2} \rightarrow K,(z, w) \mapsto z w$,
(ii) $\psi: K^{2} \rightarrow K^{2},(z, w) \mapsto(z w, w)$.

Solution:

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 12

(i) Let $p \in K$. Then $\varphi^{-1}(p)=\left\{(a, b) \in K^{2} \mid a b=p\right\}=V(x y-p)$.

If $p=0, V(x y-p)=V(x y)=V(x) \cup V(y)$ are the two coordinate axes, so there are two irreducible components.
Each of dimension 1. The ring of regular functions for $V(x y)$ is by Corollary 4.2.2 $K[x, y] / \sqrt{\varphi^{*}\left(m_{0}\right)}$. Now $\varphi^{*}: K[t] \rightarrow K[x, y], t \mapsto x y$, so $\varphi^{*}\left(m_{0}\right)=\varphi^{*}(\langle t\rangle)=\langle x y\rangle$. Since $\sqrt{x y}=\langle x y\rangle$ we have $K[x, y] / \sqrt{\varphi^{*}\left(m_{0}\right)}=$ $K[x, y] /\langle x y\rangle$.
For $p \neq 0$ we have $V(x y-p)$ is an irreducible hyperbolic curve, so there is just one irreducible component. The ring of regular functions in this case is $K[x, y] / \sqrt{\varphi^{*}\left(m_{p}\right)} \cong K\left[x, x^{-1}\right]$, since $\varphi^{*}\left(m_{p}\right)=\varphi^{*}(\langle t-p\rangle)=\langle x y-p\rangle$ is radical and $\bar{y}=\frac{\bar{p}}{x}$. Since $\operatorname{Quot}\left(K\left[x, x^{-1}\right]\right)=K(x)$, we see that the dimension of the fibre in this case is 1 .
(ii) Let $p=\left(p_{1}, p_{2}\right) \in K^{2}$. Then $\psi^{-1}(p)=\left\{(a, b) \in K^{2} \mid a b=p_{1}, b=p_{2}\right\}=V\left(x y-p_{1}, y-p_{2}\right)$.

If $p=(0,0)$ we have the fibre $\psi^{-1}(p)=V(x y, y)=V(y)$, so there is only one irreducible component. Further, we have $\psi^{*}: K\left[t_{1}, t_{2}\right] \rightarrow K[x, y],\left(t_{1}, t_{2}\right) \mapsto(x y, y)$. So $\psi^{*}\left(m_{(0,0)}\right)=\langle x y, y\rangle=\langle y\rangle$ and by 4.2.2 the ring of regular functions is $K[x, y] /\langle y\rangle=K[x]$. So the dimension is 1 .
If $p_{1}=0, p_{2} \neq 0$, we have the fibre $\psi^{-1}(p)=V\left(x y, y-p_{2}\right)=V\left(x, y-p_{2}\right)$. This is exactly one point, so there is only one irreducible component. The ring of regular functions is in this case given as: $K[x, y] /\left\langle x, y-p_{2}\right\rangle=K$. Since $\psi^{*}\left(m_{0, p_{2}}\right)=\left\langle x y, y-p_{2}\right\rangle=\left\langle x, y-p_{2}\right\rangle$ and this is a maximal ideal. It follows that the fibre has dimension 0 .
Note, that $(a, 0) \notin \operatorname{im}(\psi)$ if $a \neq 0$. So we do not need to consider the case $p_{1} \neq 0, p_{2}=0$.
If $p_{1} \neq 0, p_{2} \neq 0$, the fibre is $\psi^{-1}(p)=V\left(x y-p_{1}, y-p_{2}\right)=\left\{\left(\frac{p_{1}}{p_{2}}, p_{2}\right)\right\}$. So there is only one irreducible component. The ring of regular functions in this case is $K[x, y] /\left\langle x y-p_{1}, y-p_{2}\right\rangle=K$ (explanation analguous to before). This fibre also has dimension 0 .

