Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 12

Exercise 1.

Let K be an algebraically closed field, $f, g \in K[x_1, ..., x_n]$, $V(f, g) \subset K^n$. Prove the equivalence of the following statements:

- (i) gcd(f,g) = 1.
- (ii) $\dim(V(f,g)) \le n-2$.

Exercise 2.

Show that the statement from Theorem 4.2.1 2) does not generally hold if K is not algebraically closed. For this consider $K = \mathbb{R}$ and X = Y = K and $\varphi : X \to Y$, $t \mapsto t^2$ and the ideal $J = \langle x^2 + 1 \rangle \subset K[x]$.

Exercise 3.

Determine the number of irreducible components, the dimension and the ring of global functions for every fibre of the following morphisms:

(i)
$$\varphi: K^2 \to K, (z, w) \mapsto zw$$
,

(ii) $\psi: K^2 \to K^2, (z, w) \mapsto (zw, w).$