Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 13

Exercise 1.

Consider $X:=Y:=K^{2}$ and the morphism $\varphi: X \rightarrow Y,(z, w) \mapsto(z w, w)$. Prove:
(i) φ is birational, but not an isomorphism.
(ii) For $g(a, b)=\frac{a}{b}$ we have $g \in K(Y) \backslash \mathcal{O}(Y)$ but $\varphi^{*}(g) \in \mathcal{O}(X)$.

Proof:

(i) Since $X=Y=K^{2}$ we have that φ is a map between irreducible affine varieties. Moreover, we know from exercise sheet 12 , that $\operatorname{im}(\varphi)=K^{2} \backslash\{(a, 0) \mid a \in K \backslash\{0\}$, so φ is not bijective and hence it cannot be an isomorphism. However, $\overline{\operatorname{im}(\varphi)}=K^{2}$, so φ is dominant.
Now we consider $\varphi^{*}: K[x, y] \rightarrow K[z, w], x \mapsto z w, y \mapsto w$. Then we can extend φ^{*} to the quotient fields: $\varphi^{*}: K(x, y) \rightarrow K(z, w), x \mapsto z w, y \mapsto w$.
Now φ^{*} is injective, because φ is dominant (4.2.6).
When considering $\psi: K(z, w) \rightarrow K(x, y), z \mapsto \frac{x}{y}, w \mapsto y$, we see that $\varphi^{*} \circ \psi=i d_{K(z, w)}$, so φ^{*} is surjective. We have shown that φ^{*} is an isomorphism, so φ is birational.
(ii) We know that the projections $\pi_{1}: K^{2} \rightarrow K,(a, b) \mapsto a$ and $\pi_{2}: K^{2} \rightarrow K,(a, b) \mapsto b$ are regular functions of Y. Thus, $g=\frac{\pi_{1}}{\pi_{2}} \in K(Y)$. However, $g \notin \mathcal{O}(Y)=K\left[K^{2}\right]=K[x, y]$.
But $\varphi^{*}: K(x, y) \rightarrow K(z, w), x \mapsto z w, y \mapsto w$ so $\varphi^{*}(g)=z \in \mathcal{O}(X)=K[z, w]$.

Exercise 2.

Let K be an algebraically closed field and $X=V\left(x^{3}-y^{2}\right) \subset K^{2}$. Prove: the coordinate ring $K[X]$ is not normal.
Proof: We know that $K[C]=K[x, y] /\left\langle x^{3}-y^{2}\right\rangle$, since $\left\langle x^{3}-y^{2}\right\rangle$ is a prime ideal. Now let \bar{x} and \bar{y} be the cosets of x and $y \in K[C]$ respectively. This gives $\frac{\bar{x}}{\bar{y}} \in K(C)$. Also due to the equivalence relation we have $\left(\frac{\bar{x}}{\bar{y}}\right)^{2}=\bar{x}$. So the polynomial $z^{2}-\bar{x} \in K[x, y] /\left\langle x^{3}-y^{2}\right\rangle[z]$ and thus $\frac{\bar{y}}{\bar{x}}$ is integral over $K[C]$. Consequently, $K[C]$ and hence C are not normal.

Alternatively: We know from exercise sheet 3 that $K[C]=K[x, y] /\left\langle x^{3}-y^{2}\right\rangle \cong K\left[T^{2}, T^{3}\right]$. Thus, $K(C) \cong K(T)$. We know that $T \in K(T)$. Moreover $x^{2}-T^{2} \in K\left[T^{2}, T^{3}\right]$ is a polynomial over $K\left[T^{2}, T^{3}\right]$ with leading coefficient 1 that annulates T. So T is integral over $K\left[T^{2}, T^{3}\right]$. Hence, $K\left[T^{2}, T^{3}\right]$ is not normal. Since being normal is a property of a ring that is maintained by ringisomporphisms, $K[C]$ and hence C are not normal.

Exercise 3.

Let $R \subset S$ and $S \subset T$ be integral ring extensions. Prove that $R \subset T$ is an integral ring extension.
Proof: Let $t \in T$ be an arbitrary element. Since $S \subset T$ is an integral ring extension, there exist $s_{0}, \ldots, s_{n-1} \in S$ such that $t^{n}+s_{n-1} t^{n-1}+\ldots+s_{0}=0$. We consider the ring extension $R\left[s_{0}, \ldots, s_{n-1}\right][t] \supset R\left[s_{0}, \ldots, s_{n-1}\right] \supset R$. Since s_{0}, \ldots, s_{n-1} are integral over R, it follows by 4.3.3. that $R\left[s_{0}, \ldots, s_{n-1}\right] \supset R$ is a finitely generated R module. Since t is integral over $R\left[s_{0}, \ldots, s_{n-1}\right]$, it follows again by 4.3.3, that $R\left[s_{0}, \ldots, s_{n-1}\right][t] \supset R\left[s_{0}, \ldots, s_{n-1}\right]$ is an integral ring extension and that $R\left[s_{0}, \ldots, s_{n-1}\right][t]$ is a finitely generated $R\left[s_{0}, \ldots, s_{n-1}\right]$-module.
Let $\alpha_{1}, \ldots, \alpha_{k}$ be a generating set for $R\left[s_{0}, \ldots, s_{n-1}\right][t]$ as a finitely generated $R\left[s_{0}, \ldots, s_{n-1}\right]$-module and let $\beta_{1}, \ldots, \beta_{m}$ be a generating set for $R\left[s_{0}, \ldots, s_{n-1}\right] \supset R$ as a finitely generated R module.
Then $\alpha_{i} \cdot \beta_{j}, i=1, \ldots, k, j=1, \ldots, m$ is a finite generating set for $R\left[s_{0}, \ldots, s_{n-1}\right][t]$ as R-module.
So $R\left[s_{0}, \ldots, s_{n-1}\right][t]$ is a finitely generated R-module and thus by 4.3.3 t is integral over R.

