Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 2 - Solution

Exercise 1.

Let K be a field. Consider $R := K[T^2, T^3] \subset K[T]$ and prove the following statements:

1. R is noetherian.

2.
$$\sqrt{T^2} = \langle T^2, T^3 \rangle$$
.

Proof:

- 1. Since K is a field, K is noetherian. Also $K[T^2, T^3]$ is a finitely generated K-algebra. With Corollary 1.4.5 it follows that $K[T^2, T^3]$ is noetherian.
- 2. We know $\sqrt{T^2} = \{p \in K[T^2, T^3] | \exists n \in \mathbb{N} : p^n \in \langle T^2 \rangle\}$. With n = 1 we know that $T^2 \in \sqrt{T^2}$ and with n = 2 it follows that $T^3 \in \sqrt{T^2}$. So $\langle T^2, T^3 \rangle \subset \sqrt{T^2}$. It remains to show that $\sqrt{T^2} \subset \langle T^2, T^3 \rangle$. We do this by proving that $\langle T^2, T^3 \rangle$ is a maximal ideal and $\sqrt{T^2} \neq R$. We consider the quotient ring:

$$R/\langle T^2, T^3 \rangle = K[T^2, T^3]/\langle T^2, T^3 \rangle \cong K.$$

So $\langle T^2, T^3 \rangle$ is a maximal ideal in R. Since $1 \notin \langle T^2 \rangle$ and $1^n = 1 \forall n \in \mathbb{N}$ it follows that $1 \notin \sqrt{T^2}$ so $\sqrt{T^2} \neq R$. Therefore, as $\sqrt{T^2}$ contains the maximal ideal $\langle T^2, T^3 \rangle$ they have to be equal.

Exercise 2.

Let (X, Ω) be a topological space. The closure of a subset $A \subset X$ is the intersection \overline{A} of all closed subsets $B \subset X$ with $A \subset B$. Show:

- 1. A subset $A \subset X$ is closed in X if and only if $A = \overline{A}$.
- 2. For every finite union $A := A_1 \cup \ldots \cup A_n$ of subsets $A_1, \ldots, A_n \subset X$ the following applies: $\overline{A} = \overline{A_1} \cup \ldots \cup \overline{A_n}$.
- 3. Let $A \subset B \subset X$ be subsets. The closure of A in B with respect to the subspace topology is given by $\overline{A} \cap B$. The subspace topology of $B \subset X$ is given by the following system of open sets: $\Omega_B = \{Y \cap B | Y \subset X \text{ open}\}$.

Proof:

- "⇒": Let A ⊂ X be closed. Since A
 = ∩ B ⊂ X closed, B, we know that A
 ⊂ A (because A ⊂ A closed in X). Also since A
 is the intersection over sets of X which contain A it follows that A ⊂ A.
 ", ⇐": Let A ⊂ X such that A = A. Since any intersection of closed subsets of a topological space is closed and A is such an intersection, A is closed. So A is closed in X.
- 2. Let $A := A_1 \cup \ldots \cup A_n$ be a finite union of subsets $A_1, \ldots, A_n \subset X$. We prove $\overline{A} = \overline{A_1} \cup \ldots \cup \overline{A_n}$ inductively. For n = 1 there is nothing to show. Let n = 2. We need to show $\overline{A_1 \cup A_2} = \overline{A_1} \cup \overline{A_2}$. Since $\overline{A_1 \cup A_2}$ is closed and contains $A_1 \cup A_2$, it also contains $\overline{A_1 \cup A_2}$. Moreover, $\overline{A_1 \cup A_2}$ is closed and contains A_1 , so it also contains $\overline{A_1}$. Since the same is true for A_2 it also contains $\overline{A_2}$ and thus $\overline{A_1 \cup A_2} = \overline{A_1} \cup \overline{A_2}$.

For the induction step we assume that the statement is true for n - 1. By using the statement for n = 2 and the induction assumption the claim follows:

$$\overline{(A_1 \cup \ldots A_{n-1}) \cup A_n} = \overline{(A_1 \cup \ldots A_{n-1})} \cup \overline{A_n}$$
$$= \overline{A_1} \cup \ldots \cup \overline{A_{n-1}} \cup \overline{A_n}$$

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 2 - Solution

3. Let $A \subset B \subset X$ be subsets. The closure of A in B is the intersection of all closed subsets of B which contain A.

$$\overline{A}^B = \bigcap_{\substack{Y \subset B \text{ closed} \\ A \subset Y}} Y$$

A set $Y \subset B$ is closed in B if and only if there exists $Y' \subset X$ closed such that $Y = Y' \cap B$. Now if $A \subset Y$ then $A \subset Y'$ for $Y = Y' \cap B$. So we can write:

$$\overline{A}^{B} = \bigcap_{\substack{Y = Y' \cap B \subset B, Y' \subset X \text{ closed} \\ A \subset Y}} Y$$
$$= \bigcap_{\substack{Y' \subset X \text{ closed} \\ A \subset Y'}} Y' \cap B$$
$$= \overline{A} \cap B$$

- **Exercise 3.** 1. Let $V_1 = \{1,3,5\} \subset \mathbb{R}$ and $V_2 = \{1,2,3,4,5\} \subset \mathbb{R}$. Compute $I(V_1) \subset \mathbb{R}[x]$ and $I(V_2) \subset \mathbb{R}[x]$. Prove $I(V_2) \subset I(V_1)$.
 - 2. Let $V_3 = \{(0,0), (0,2), (1,0), (1,1), (1,-2)\}, V_4 = \{(1,-1), (1,0), (0,0), (3,1), (0,2)\} \subset \mathbb{R}^2$. Compute $I(V_3), I(V_4) \subset \mathbb{R}[x, y]$ and $I(V_3 \cap V_4)$.
 - 3. Let $M \neq \emptyset$ be an arbitrary finite subset of \mathbb{R}^2 . Find a polynomial $f \in \mathbb{R}[x, y]$ such that M = V(f).
 - 4. Consider $\mathbb{Z} \subset \mathbb{R}$. Compute $I(\mathbb{Z}) \subset \mathbb{R}[x]$.

Solution:

1. We compute:

$$I(V_1) = \{ f \in \mathbb{R}[x] | f(1) = 0, f(3) = 0, f(5) = 0 \}$$

= $\{ f \in \mathbb{R}[x] | (x-1) | f \land (x-3) | f \land (x-5) | f \}$
= $\langle (x-1)(x-3)(x-5) \rangle \subset \mathbb{R}[x]$

$$I(V_2) = \{ f \in \mathbb{R}[x] | f(1) = 0, f(2) = 0, f(3) = 0, f(4) = 0, f(5) = 0 \}$$

= $\{ f \in \mathbb{R}[x] | (x-1) | f \land (x-2) | f(x-3) | f \land (x-4) | f \land (x-5) | f \}$
= $\langle (x-1)(x-2)(x-3)(x-4)(x-5) \rangle \subset \mathbb{R}[x]$

Since the generator (x-1)(x-2)(x-3)(x-4)(x-5) of $I(V_2)$ is contained in $I(V_1) = \langle (x-1)(x-3)(x-5) \rangle$ we have $I(V_2) \subset I(V_1)$.

2. Compute:

$$\begin{split} I(V_3) &= I(\{(0,0), (0,2), (1,0), (1,1)\}) \\ &= I(\{(0,0)\} \cup \{(0,2)\} \cup \{(1,0)\} \cup \{(1,1)\}) \\ &= I((0,0)) \cap I((0,2)) \cap I((1,0)) \cap I((1,1)) \\ &= \langle x, y \rangle \cap \langle x, y - 2 \rangle \cap \langle x - 1, y \rangle \cap \langle x - 1, y - 1 \rangle \\ &= (\langle x, y \rangle \cap \langle x, y - 2 \rangle) \cap (\langle x - 1, y \rangle \cap \langle x - 1, y - 1 \rangle) \\ &= \langle x^2, xy - 2x, xy, y^2 - 2y \rangle \cap \langle (x - 1)^2, (x - 1)(y - 1), xy - y, y^2 - y \rangle \\ &= \langle x^2, xy - 2x, xy, y^2 - 2y \rangle \cap \langle (x - 1)^2, (x - 1)(y - 1), (x - 1)y, y^2 - y \rangle \\ &= \langle x, y^2 - 2y \rangle \cap \langle (x - 1), y^2 - y \rangle \\ &= \langle x(x - 1), x(y^2 - y), (y^2 - 2y)(x - 1), (y^2 - 2y)(y^2 - y) \rangle \end{split}$$

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 2 - Solution

Here we used Lemma 1.3.5 (6) and the fact that the ideals are coprime. Also we simplified the set of generators by removing superfluous polynomials.

We compute with a different approach: The first polynomial sets all possible values for the x-coordinate. With the following polynomials we make the corresponding values of the y-coordinate explicit. Example: if x = 0 it follows that $(x - 1)(x - 3) \neq 0$ so the remaining factor of the polynomial has to be zero and we can use this to take the values of the y-coordinates belonging to x = 0. For x = 0 there are two points in V_4 namely: (0,0) and (0,2). So the remaining factor for the second polynomial is y(y - 2).

$$I(V_4) = I(\{(1, -1), (1, 0), (0, 0), (3, 1), (0, 2)\})$$

= $\langle x(x - 1)(x - 3), (x - 1)(x - 3)y(y - 2), x(x - 1)(y - 1), x(x - 3)(y + 1)y \rangle$

Now we compute $I(V_3 \cap V_4)$:

$$I(V_3 \cap V_4) = I(\{(1,0), (0,0), (0,2)\})$$

= $\langle x(x-1), (x-1)y(y-2), xy \rangle \supset I(V_3), I(V_4).$

3. Let $M = \{(a_1, b_1), \dots, (a_n, b_n)\} \subset \mathbb{R}^2$ be an arbitrary non-empty finite subset of \mathbb{R}^2 . We want to construct a polynomial $f \in \mathbb{R}[x, y]$ such that M = V(f).

We start by thinking about a single point $(a, b) \in \mathbb{R}^2$. We start with the two polynomials x - a and y - b which both have to be zero to give us the required vanishing point. The polynomial (x - a) + (y - b) is a good starting point since $(a, b) \in V((x - a) + (y - b))$. But also $(b, a) \in V((x - a) + (y - b))$, so we have not finished yet. Since we are working over the real numbers we can use that squares are always non-negative and try $(x - a)^2 + (y - b)^2$. That way we prevent cancellations as before and each summand has to be zero in order for the polynomial to be zero. So $V((x - a)^2 + (y - b)^2) = \{(a, b)\}$.

Now for our finite set of arbitrary points we can just take the product of the polynomials we obtain for each of the single points:

$$M = V(\prod_{i=1}^{n} ((x - a_i)^2 + (y - b_i)^2))$$

where $\prod_{i=1}^{n} ((x - a_i)^2 + (y - b_i)^2) \in \mathbb{R}[x, y].$

 \Box .

4. Consider $\mathbb{Z} \subset \mathbb{R}$. We want $I(\mathbb{Z}) \subset \mathbb{R}[x]$.

Since \mathbb{Z} is not finite we cannot use the same trick as in the previous exercise: For an infinite number of points we will not obtain a polynomial but a power series.

By Lemma 1.3.5 we have I(A) = I(A). So we can also consider the closure of \mathbb{Z} in \mathbb{R} . The closure of \mathbb{Z} is an affine variety in \mathbb{R} , i.e., the zero set of some polynomials in $\mathbb{R}[x]$. Any polynomial in R[x] of degree at least one can always only have finitely many zeroes, but \mathbb{Z} is infinite. So $I(\mathbb{Z})$ does not contain polynomials of degree one or higher. However, $I(\mathbb{Z})$ is not empty since, $0 \in I(\mathbb{Z})$. Since non-zero constant polynomials have no zeroes at all, it follows that $I(\mathbb{Z}) = 0$. Furthermore we have shown: $\overline{\mathbb{Z}} = \mathbb{R}$ in the Zariski topology.

Exercise 4.

Let A, B, C be finite groups and let

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$$

be a short exact sequence of group homomorphisms, i.e., α is injective, β is surjective and ker $(\beta) = im(\alpha)$. Prove $|B| = |A| \cdot |C|$.

Proof: We know that α is injective and β is surjective and moreover $im(\alpha) = ker(\beta)$.

For any $c \in C$ the fibre $\beta^{-1}(c)$ contains exactly |A| elements. Because: Since β is surjective there exists $b \in \beta^{-1}(c)$. And since $\operatorname{im}(\alpha) = \operatorname{ker}(\beta)$ it follows that $b + \operatorname{im}(\alpha) \in \beta^{-1}(c)$. As α is injective this implies that $|\beta^{-1}(c)| \ge |A|$. Assume $x \in B \setminus b + \operatorname{im}(\alpha)$ is another element with $\beta(x) = c$ then $x - b \in \operatorname{ker}(\beta) = \operatorname{im}(\alpha)$ and thus $x \in b + \operatorname{im}(\alpha)$. Contradiction.

So
$$|\beta^{-1}(c)| = |A|$$
. Since $B = \bigcup_{c \in C} \beta^{-1}(c)$ it follows that $|B| = |C| \cdot |A|$.