Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 2-Solution

Exercise 1.

Let K be a field. Consider $R:=K\left[T^{2}, T^{3}\right] \subset K[T]$ and prove the following statements:

1. R is noetherian.
2. $\sqrt{T^{2}}=\left\langle T^{2}, T^{3}\right\rangle$.

Proof:

1. Since K is a field, K is noetherian. Also $K\left[T^{2}, T^{3}\right]$ is a finitely generated K-algebra. With Corollary 1.4.5 it follows that $K\left[T^{2}, T^{3}\right]$ is noetherian.
2. We know $\sqrt{T^{2}}=\left\{p \in K\left[T^{2}, T^{3}\right] \mid \exists n \in \mathbb{N}: p^{n} \in\left\langle T^{2}\right\rangle\right\}$. With $n=1$ we know that $T^{2} \in \sqrt{T^{2}}$ and with $n=2$ it follows that $T^{3} \in \sqrt{T^{2}}$. So $\left\langle T^{2}, T^{3}\right\rangle \subset \sqrt{T^{2}}$. It remains to show that $\sqrt{T^{2}} \subset\left\langle T^{2}, T^{3}\right\rangle$. We do this by proving that $\left\langle T^{2}, T^{3}\right\rangle$ is a maximal ideal and $\sqrt{T^{2}} \neq R$.
We consider the quotient ring:

$$
R /\left\langle T^{2}, T^{3}\right\rangle=K\left[T^{2}, T^{3}\right] /\left\langle T^{2}, T^{3}\right\rangle \cong K
$$

So $\left\langle T^{2}, T^{3}\right\rangle$ is a maximal ideal in R. Since $1 \notin\left\langle T^{2}\right\rangle$ and $1^{n}=1 \forall n \in \mathbb{N}$ it follows that $1 \notin \sqrt{T^{2}}$ so $\sqrt{T^{2}} \neq R$. Therefore, as $\sqrt{T^{2}}$ contains the maximal ideal $\left\langle T^{2}, T^{3}\right\rangle$ they have to be equal.

Exercise 2.

Let (X, Ω) be a topological space. The closure of a subset $A \subset X$ is the intersection \bar{A} of all closed subsets $B \subset X$ with $A \subset B$. Show:

1. A subset $A \subset X$ is closed in X if and only if $A=\bar{A}$.
2. For every finite union $A:=A_{1} \cup \ldots \cup A_{n}$ of subsets $A_{1}, \ldots, A_{n} \subset X$ the following applies: $\bar{A}=\overline{A_{1}} \cup \ldots \cup \overline{A_{n}}$.
3. Let $A \subset B \subset X$ be subsets. The closure of A in B with respect to the subspace topology is given by $\bar{A} \cap B$. The subspace topology of $B \subset X$ is given by the following system of open sets: $\Omega_{B}=\{Y \cap B \mid Y \subset X$ open $\}$.

Proof:

1. " \Rightarrow ": Let $A \subset X$ be closed. Since $\bar{A}=\bigcap_{\substack{B \subset X \text { closed, } \\ A \subset B}} B$, we know that $\bar{A} \subset A$ (because $A \subset A$ closed in X). Also since \bar{A} is the intersection over sets of X which contain A it follows that $A \subset \bar{A}$.
,${ }^{\prime \prime}$ ": Let $A \subset X$ such that $A=\bar{A}$. Since any intersection of closed subsets of a topological space is closed and \bar{A} is such an intersection, \bar{A} is closed. So A is closed in X.
2. Let $A:=A_{1} \cup \ldots \cup A_{n}$ be a finite union of subsets $A_{1}, \ldots, A_{n} \subset X$. We prove $\bar{A}=\overline{A_{1}} \cup \ldots \cup \overline{A_{n}}$ inductively. For $n=1$ there is nothing to show. Let $n=2$. We need to show $\overline{A_{1} \cup A_{2}}=\overline{A_{1}} \cup \overline{A_{2}}$.
Since $\overline{A_{1}} \cup \overline{A_{2}}$ is closed and contains $A_{1} \cup A_{2}$, it also contains $\overline{A_{1} \cup A_{2}}$. Moreover, $\overline{A_{1} \cup A_{2}}$ is closed and contains A_{1}, so it also contains $\overline{A_{1}}$. Since the same is true for A_{2} it also contains $\overline{A_{2}}$ and thus $\overline{A_{1} \cup A_{2}}=\overline{A_{1}} \cup \overline{A_{2}}$. For the induction step we assume that the statement is true for $n-1$. By using the statement for $n=2$ and the induction assumption the claim follows:

$$
\begin{aligned}
\overline{\left(A_{1} \cup \ldots A_{n-1}\right) \cup A_{n}} & =\overline{\left(A_{1} \cup \ldots A_{n-1}\right)} \cup \overline{A_{n}} \\
& =\overline{A_{1}} \cup \ldots \cup \overline{A_{n-1}} \cup \overline{A_{n}}
\end{aligned}
$$

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 2 - Solution

3. Let $A \subset B \subset X$ be subsets. The closure of A in B is the intersection of all closed subsets of B which contain A.

$$
\bar{A}^{B}=\bigcap_{\substack{Y \subset B \text { closed } \\ A \subset Y}} Y
$$

A set $Y \subset B$ is closed in B if and only if there exists $Y^{\prime} \subset X$ closed such that $Y=Y^{\prime} \cap B$. Now if $A \subset Y$ then $A \subset Y^{\prime}$ for $Y=Y^{\prime} \cap B$. So we can write:

$$
\begin{aligned}
\bar{A}^{B} & =\bigcap_{\substack{Y=Y^{\prime} \cap B \subset B, Y^{\prime} \subset X \text { closed } \\
A \subset Y}} Y \\
& =\bigcap_{\substack{Y^{\prime} \subset X \text { closed } \\
A \subset Y^{\prime}}} Y^{\prime} \cap B \\
& =\bar{A} \cap B
\end{aligned}
$$

Exercise 3. 1. Let $V_{1}=\{1,3,5\} \subset \mathbb{R}$ and $V_{2}=\{1,2,3,4,5\} \subset \mathbb{R}$. Compute $I\left(V_{1}\right) \subset \mathbb{R}[x]$ and $I\left(V_{2}\right) \subset \mathbb{R}[x]$. Prove $I\left(V_{2}\right) \subset I\left(V_{1}\right)$.
2. Let $V_{3}=\{(0,0),(0,2),(1,0),(1,1),(1,-2)\}, V_{4}=\{(1,-1),(1,0),(0,0),(3,1),(0,2)\} \subset \mathbb{R}^{2}$. Compute $I\left(V_{3}\right), I\left(V_{4}\right) \subset \mathbb{R}[x, y]$ and $I\left(V_{3} \cap V_{4}\right)$.
3. Let $M \neq \emptyset$ be an arbitrary finite subset of \mathbb{R}^{2}. Find a polynomial $f \in \mathbb{R}[x, y]$ such that $M=V(f)$.
4. Consider $\mathbb{Z} \subset \mathbb{R}$. Compute $I(\mathbb{Z}) \subset \mathbb{R}[x]$.

Solution:

1. We compute:

$$
\begin{gathered}
I\left(V_{1}\right)=\{f \in \mathbb{R}[x] \mid f(1)=0, f(3)=0, f(5)=0\} \\
=\{f \in \mathbb{R}[x]|(x-1)| f \wedge(x-3)|f \wedge(x-5)| f\} \\
=\langle(x-1)(x-3)(x-5)\rangle \subset \mathbb{R}[x] \\
I\left(V_{2}\right)=\{f \in \mathbb{R}[x] \mid f(1)=0, f(2)=0, f(3)=0, f(4)=0, f(5)=0\} \\
=\{f \in \mathbb{R}[x]|(x-1)| f \wedge(x-2)|f(x-3)| f \wedge(x-4)|f \wedge(x-5)| f\} \\
=\langle(x-1)(x-2)(x-3)(x-4)(x-5)\rangle \subset \mathbb{R}[x]
\end{gathered}
$$

Since the generator $(x-1)(x-2)(x-3)(x-4)(x-5)$ of $I\left(V_{2}\right)$ is contained in $I\left(V_{1}\right)=\langle(x-1)(x-3)(x-5)\rangle$ we have $I\left(V_{2}\right) \subset I\left(V_{1}\right)$.
2. Compute:

$$
\begin{aligned}
I\left(V_{3}\right) & =I(\{(0,0),(0,2),(1,0),(1,1)\}) \\
& =I(\{(0,0)\} \cup\{(0,2)\} \cup\{(1,0)\} \cup\{(1,1)\}) \\
& =I((0,0)) \cap I((0,2)) \cap I((1,0)) \cap I((1,1)) \\
& =\langle x, y\rangle \cap\langle x, y-2\rangle \cap\langle x-1, y\rangle \cap\langle x-1, y-1\rangle \\
& =(\langle x, y\rangle \cap\langle x, y-2\rangle) \cap(\langle x-1, y\rangle \cap\langle x-1, y-1\rangle) \\
& =\left\langle x^{2}, x y-2 x, x y, y^{2}-2 y\right\rangle \cap\left\langle(x-1)^{2},(x-1)(y-1), x y-y, y^{2}-y\right\rangle \\
& =\left\langle x^{2}, x y-2 x, x y, y^{2}-2 y\right\rangle \cap\left\langle(x-1)^{2},(x-1)(y-1),(x-1) y, y^{2}-y\right\rangle \\
& =\left\langle x, y^{2}-2 y\right\rangle \cap\left\langle(x-1), y^{2}-y\right\rangle \\
& =\left\langle x(x-1), x\left(y^{2}-y\right),\left(y^{2}-2 y\right)(x-1),\left(y^{2}-2 y\right)\left(y^{2}-y\right)\right\rangle
\end{aligned}
$$

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 2 - Solution

Here we used Lemma 1.3.5 (6) and the fact that the ideals are coprime. Also we simplified the set of generators by removing superfluous polynomials.
We compute with a different approach: The first polynomial sets all possible values for the x-coordinate. With the following polynomials we make the corresponding values of the y-coordinate explicit. Example: if $x=0$ it follows that $(x-1)(x-3) \neq 0$ so the remaining factor of the polynomial has to be zero and we can use this to take the values of the y-coorindates belonging to $x=0$. For $x=0$ there are two points in V_{4} namely: $(0,0)$ and $(0,2)$. So the remaining factor for the second polynomial is $y(y-2)$.

$$
\begin{aligned}
I\left(V_{4}\right) & =I(\{(1,-1),(1,0),(0,0),(3,1),(0,2)\}) \\
& =\langle x(x-1)(x-3),(x-1)(x-3) y(y-2), x(x-1)(y-1), x(x-3)(y+1) y\rangle
\end{aligned}
$$

Now we compute $I\left(V_{3} \cap V_{4}\right)$:

$$
\begin{aligned}
I\left(V_{3} \cap V_{4}\right) & =I(\{(1,0),(0,0),(0,2)\}) \\
& =\langle x(x-1),(x-1) y(y-2), x y\rangle \supset I\left(V_{3}\right), I\left(V_{4}\right) .
\end{aligned}
$$

3. Let $M=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\} \subset \mathbb{R}^{2}$ be an arbitrary non-empty finite subset of \mathbb{R}^{2}. We want to construct a polynomial $f \in \mathbb{R}[x, y]$ such that $M=V(f)$.
We start by thinking about a single point $(a, b) \in \mathbb{R}^{2}$. We start with the two polynomials $x-a$ and $y-b$ which both have to be zero to give us the required vanishing point. The polynomial $(x-a)+(y-b)$ is a good starting point since $(a, b) \in V((x-a)+(y-b))$. But also $(b, a) \in V((x-a)+(y-b))$, so we have not finished yet. Since we are working over the real numbers we can use that squares are always non-negative and try $(x-a)^{2}+(y-b)^{2}$. That way we prevent cancellations as before and each summand has to be zero in order for the polynomial to be zero. So $V\left((x-a)^{2}+(y-b)^{2}\right)=\{(a, b)\}$.
Now for our finite set of arbitrary points we can just take the product of the polynomials we obtain for each of the single points:

$$
M=V\left(\prod_{i=1}^{n}\left(\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2}\right)\right)
$$

where $\prod_{i=1}^{n}\left(\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2}\right) \in \mathbb{R}[x, y]$.
4. Consider $\mathbb{Z} \subset \mathbb{R}$. We want $I(\mathbb{Z}) \subset \mathbb{R}[x]$.

Since \mathbb{Z} is not finite we cannot use the same trick as in the previous exercise: For an infinite number of points we will not obtain a polynomial but a power series.
By Lemma 1.3 .5 we have $I(A)=I(\bar{A})$. So we can also consider the closure of \mathbb{Z} in \mathbb{R}. The closure of \mathbb{Z} is an affine variety in \mathbb{R}, i.e., the zero set of some polynomials in $\mathbb{R}[x]$. Any polynomial in $R[x]$ of degree at least one can always only have finitely many zeroes, but \mathbb{Z} is infinite. So $I(\mathbb{Z})$ does not contain polynomials of degree one or higher. However, $I(\mathbb{Z})$ is not empty since, $0 \in I(\mathbb{Z})$. Since non-zero constant polynomials have no zeroes at all, it follows that $I(\mathbb{Z})=0$. Furthermore we have shown: $\bar{Z}=\mathbb{R}$ in the Zariski topology.

Exercise 4.

Let A, B, C be finite groups and let

$$
0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0
$$

be a short exact sequence of group homomorphisms, i.e., α is injective, β is surjective and $\operatorname{ker}(\beta)=\operatorname{im}(\alpha)$. Prove $|B|=|A| \cdot|C|$.

Proof: We know that α is injective and β is surjective and moreover $\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$.
For any $c \in C$ the fibre $\beta^{-1}(c)$ contains exactly $|A|$ elements. Because: Since β is surjective there exists $b \in \beta^{-1}(c)$. And since $\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$ it follows that $b+\operatorname{im}(\alpha) \in \beta^{-1}(c)$. As α is injective this implies that $\left|\beta^{-1}(c)\right| \geq|A|$. Assume $x \in B \backslash b+\operatorname{im}(\alpha)$ is another element with $\beta(x)=c$ then $x-b \in \operatorname{ker}(\beta)=\operatorname{im}(\alpha)$ and thus $x \in b+\operatorname{im}(\alpha)$. Contradiction.
So $\left|\beta^{-1}(c)\right|=|A|$. Since $B=\bigcup_{c \in C} \beta^{-1}(c)$ it follows that $|B|=|C| \cdot|A|$.

