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Exercise 1.
Let K be a field. Consider R := K[T 2, T 3] ⊂ K[T ] and prove the following statements:

1. R is noetherian.

2.
√
T 2 = 〈T 2, T 3〉.

Proof:

1. Since K is a field, K is noetherian. Also K[T 2, T 3] is a finitely generated K-algebra. With Corollary 1.4.5 it
follows that K[T 2, T 3] is noetherian. �

2. We know
√
T 2 = {p ∈ K[T 2, T 3]| ∃n ∈ N : pn ∈ 〈T 2〉}. With n = 1 we know that T 2 ∈

√
T 2 and with n = 2

it follows that T 3 ∈
√
T 2. So 〈T 2, T 3〉 ⊂

√
T 2. It remains to show that

√
T 2 ⊂ 〈T 2, T 3〉. We do this by proving

that 〈T 2, T 3〉 is a maximal ideal and
√
T 2 6= R.

We consider the quotient ring:

R/〈T 2, T 3〉 = K[T 2, T 3]/〈T 2, T 3〉 ∼= K.

So 〈T 2, T 3〉 is a maximal ideal in R. Since 1 /∈ 〈T 2〉 and 1n = 1∀n ∈ N it follows that 1 /∈
√
T 2 so

√
T 2 6= R.

Therefore, as
√
T 2 contains the maximal ideal 〈T 2, T 3〉 they have to be equal. �

Exercise 2.
Let (X,Ω) be a topological space. The closure of a subset A ⊂ X is the intersection A of all closed subsets B ⊂ X
with A ⊂ B. Show:

1. A subset A ⊂ X is closed in X if and only if A = A.

2. For every finite union A := A1 ∪ . . .∪An of subsets A1, . . . , An ⊂ X the following applies: A = A1 ∪ . . .∪An.

3. Let A ⊂ B ⊂ X be subsets. The closure of A in B with respect to the subspace topology is given by A ∩B.
The subspace topology of B ⊂ X is given by the following system of open sets: ΩB = {Y ∩B|Y ⊂ Xopen}.

Proof:

1. „⇒“: Let A ⊂ X be closed. Since A =
⋂

B⊂Xclosed,
A⊂B

B, we know that A ⊂ A (because A ⊂ A closed in X). Also

since A is the intersection over sets of X which contain A it follows that A ⊂ A.
„⇐“: Let A ⊂ X such that A = A. Since any intersection of closed subsets of a topological space is closed and
A is such an intersection, A is closed. So A is closed in X. �

2. Let A := A1 ∪ . . .∪An be a finite union of subsets A1, . . . , An ⊂ X. We prove A = A1 ∪ . . .∪An inductively.
For n = 1 there is nothing to show. Let n = 2. We need to show A1 ∪A2 = A1 ∪A2.
Since A1∪A2 is closed and contains A1∪A2, it also contains A1 ∪A2. Moreover, A1 ∪A2 is closed and contains
A1, so it also contains A1. Since the same is true for A2 it also contains A2 and thus A1 ∪A2 = A1 ∪A2.
For the induction step we assume that the statement is true for n − 1. By using the statement for n = 2 and
the induction assumption the claim follows:

(A1 ∪ . . . An−1) ∪An = (A1 ∪ . . . An−1) ∪An
= A1 ∪ . . . ∪An−1 ∪An

�
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3. Let A ⊂ B ⊂ X be subsets. The closure of A in B is the intersection of all closed subsets of B which contain
A.

A
B

=
⋂

Y⊂B closed
A⊂Y

Y

A set Y ⊂ B is closed in B if and only if there exists Y ′ ⊂ X closed such that Y = Y ′ ∩ B. Now if A ⊂ Y
then A ⊂ Y ′ for Y = Y ′ ∩B. So we can write:

A
B

=
⋂

Y =Y ′∩B⊂B,Y ′⊂X closed
A⊂Y

Y

=
⋂

Y ′⊂X closed
A⊂Y ′

Y ′ ∩B

= A ∩B

�

Exercise 3. 1. Let V1 = {1, 3, 5} ⊂ R and V2 = {1, 2, 3, 4, 5} ⊂ R. Compute I(V1) ⊂ R[x] and I(V2) ⊂ R[x].
Prove I(V2) ⊂ I(V1).

2. Let V3 = {(0, 0), (0, 2), (1, 0), (1, 1), (1,−2)}, V4 = {(1,−1), (1, 0), (0, 0), (3, 1), (0, 2)} ⊂ R2.
Compute I(V3), I(V4) ⊂ R[x, y] and I(V3 ∩ V4).

3. Let M 6= ∅ be an arbitrary finite subset of R2. Find a polynomial f ∈ R[x, y] such that M = V (f).

4. Consider Z ⊂ R. Compute I(Z) ⊂ R[x].

Solution:

1. We compute:

I(V1) = {f ∈ R[x]|f(1) = 0, f(3) = 0, f(5) = 0}
= {f ∈ R[x]|(x− 1)|f ∧ (x− 3)|f ∧ (x− 5)|f}
= 〈(x− 1)(x− 3)(x− 5)〉 ⊂ R[x]

I(V2) = {f ∈ R[x]|f(1) = 0, f(2) = 0, f(3) = 0, f(4) = 0, f(5) = 0}
= {f ∈ R[x]|(x− 1)|f ∧ (x− 2)|f(x− 3)|f ∧ (x− 4)|f ∧ (x− 5)|f}
= 〈(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)〉 ⊂ R[x]

Since the generator (x−1)(x−2)(x−3)(x−4)(x−5) of I(V2) is contained in I(V1) = 〈(x−1)(x−3)(x−5)〉
we have I(V2) ⊂ I(V1). �

2. Compute:

I(V3) = I({(0, 0), (0, 2), (1, 0), (1, 1)})
= I({(0, 0)} ∪ {(0, 2)} ∪ {(1, 0)} ∪ {(1, 1)})
= I((0, 0)) ∩ I((0, 2)) ∩ I((1, 0)) ∩ I((1, 1))

= 〈x, y〉 ∩ 〈x, y − 2〉 ∩ 〈x− 1, y〉 ∩ 〈x− 1, y − 1〉
= (〈x, y〉 ∩ 〈x, y − 2〉) ∩ (〈x− 1, y〉 ∩ 〈x− 1, y − 1〉)
= 〈x2, xy − 2x, xy, y2 − 2y〉 ∩ 〈(x− 1)2, (x− 1)(y − 1), xy − y, y2 − y〉
= 〈x2, xy − 2x, xy, y2 − 2y〉 ∩ 〈(x− 1)2, (x− 1)(y − 1), (x− 1)y, y2 − y〉
= 〈x, y2 − 2y〉 ∩ 〈(x− 1), y2 − y〉
= 〈x(x− 1), x(y2 − y), (y2 − 2y)(x− 1), (y2 − 2y)(y2 − y)〉
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Here we used Lemma 1.3.5 (6) and the fact that the ideals are coprime. Also we simplified the set of generators
by removing superfluous polynomials.
We compute with a different approach: The first polynomial sets all possible values for the x-coordinate. With
the following polynomials we make the corresponding values of the y-coordinate explicit. Example: if x = 0 it
follows that (x − 1)(x − 3) 6= 0 so the remaining factor of the polynomial has to be zero and we can use this
to take the values of the y-coorindates belonging to x = 0. For x = 0 there are two points in V4 namely: (0, 0)
and (0, 2). So the remaining factor for the second polynomial is y(y − 2).

I(V4) = I({(1,−1), (1, 0), (0, 0), (3, 1), (0, 2)})
= 〈x(x− 1)(x− 3), (x− 1)(x− 3)y(y − 2), x(x− 1)(y − 1), x(x− 3)(y + 1)y〉

Now we compute I(V3 ∩ V4):

I(V3 ∩ V4) = I({(1, 0), (0, 0), (0, 2)})
= 〈x(x− 1), (x− 1)y(y − 2), xy〉 ⊃ I(V3), I(V4).

�

3. Let M = {(a1, b1), . . . , (an, bn)} ⊂ R2 be an arbitrary non-empty finite subset of R2. We want to construct a
polynomial f ∈ R[x, y] such that M = V (f).
We start by thinking about a single point (a, b) ∈ R2. We start with the two polynomials x − a and y − b
which both have to be zero to give us the required vanishing point. The polynomial (x− a) + (y− b) is a good
starting point since (a, b) ∈ V ((x − a) + (y − b)). But also (b, a) ∈ V ((x − a) + (y − b)), so we have not
finished yet. Since we are working over the real numbers we can use that squares are always non-negative and
try (x− a)2 + (y− b)2. That way we prevent cancellations as before and each summand has to be zero in order
for the polynomial to be zero. So V ((x− a)2 + (y − b)2) = {(a, b)}.
Now for our finite set of arbitrary points we can just take the product of the polynomials we obtain for each of
the single points:

M = V (

n∏
i=1

((x− ai)2 + (y − bi)2))

where
∏n
i=1((x− ai)2 + (y − bi)2) ∈ R[x, y]. �.

4. Consider Z ⊂ R. We want I(Z) ⊂ R[x].
Since Z is not finite we cannot use the same trick as in the previous exercise: For an infinite number of points
we will not obtain a polynomial but a power series.
By Lemma 1.3.5 we have I(A) = I(A). So we can also consider the closure of Z in R. The closure of Z is an
affine variety in R, i.e., the zero set of some polynomials in R[x]. Any polynomial in R[x] of degree at least one
can always only have finitely many zeroes, but Z is infinite. So I(Z) does not contain polynomials of degree one
or higher. However, I(Z) is not empty since, 0 ∈ I(Z). Since non-zero constant polynomials have no zeroes at
all, it follows that I(Z) = 0. Furthermore we have shown: Z = R in the Zariski topology. �

Exercise 4.
Let A, B, C be finite groups and let

0→ A
α−→ B

β−→ C → 0

be a short exact sequence of group homomorphisms, i.e., α is injective, β is surjective and ker(β) = im(α). Prove
|B| = |A| · |C|.

Proof: We know that α is injective and β is surjective and moreover im(α) = ker(β).
For any c ∈ C the fibre β−1(c) contains exactly |A| elements. Because: Since β is surjective there exists b ∈ β−1(c).
And since im(α) = ker(β) it follows that b + im(α) ∈ β−1(c). As α is injective this implies that |β−1(c)| ≥ |A|.
Assume x ∈ B \ b+ im(α) is another element with β(x) = c then x− b ∈ ker(β) = im(α) and thus x ∈ b+ im(α).
Contradiction.
So |β−1(c)| = |A|. Since B =

⋃
c∈C β

−1(c) it follows that |B| = |C| · |A|. �


