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Exercise 1.
Let K be a field. Consider R := K [T, T3] C K[T] and prove the following statements:

1. R is noetherian.
2. VT? = (T%,T3).
Proof:

1. Since K is a field, K is noetherian. Also K[T? T3] is a finitely generated K-algebra. With Corollary 1.4.5 it
follows that K[T?, T3] is noetherian. O

2. We know VT2 = {p € K[T?,T%)||3n € N : p" € (T?)}. With n = 1 we know that 72 € VT2 and with n = 2
it follows that 7% € V/T2. So (T2, T3) C V/T?. It remains to show that VT2 C (T2, T%). We do this by proving
that (T2, T2) is a maximal ideal and VT2 # R.

We consider the quotient ring:

R/(T?, T3 = K[T? T3] /(T? T3 = K.

So (T2, T3) is a maximal ideal in R. Since 1 ¢ (T?) and 1" = 1V¥n € N it follows that 1 ¢ VT2 so VT2 # R.
Therefore, as /T2 contains the maximal ideal (T, T) they have to be equal. O

Exercise 2.

Let (X,9) be a topological space. The closure of a subset A C X is the intersection A of all closed subsets B C X
with A C B. Show:

1. A subset A C X is closed in X if and only if A = A.
2. For every finite union A := A; U...UA,, of subsets A;,..., A4, C X the following applies: A= A;U...UA,.

3. Let A C B C X be subsets. The closure of A in B with respect to the subspace topology is given by AN B.
The subspace topology of B C X is given by the following system of open sets: 1 = {Y N B|Y C Xopen}.

Proof:

1. ,=" Let A C X be closed. Since A = () sc xclosed, B, we know that A C A (because A C A closed in X). Also

o ACB .
since A is the intersection over sets of X which contain A it follows that A C A.
»<" Let A C X such that A = A. Since any intersection of closed subsets of a topological space is closed and
A is such an intersection, A is closed. So A is closed in X. O

2. Let A:= A, U...UA, be a finite union of subsets A;,..., A, C X. We prove A = A; U...U A, inductively.
For n = 1 there is nothing to show. Let n = 2. We need to show A; U Ay = A; U As.
Since A;UAs is closed and contains A1 UAs, it also contains A7 U As. Moreover, A1 U As is closed and contains
A, so it also contains A;. Since the same is true for A it also contains As and thus A; U Ay = A; U 4,.
For the induction step we assume that the statement is true for n — 1. By using the statement for n = 2 and
the induction assumption the claim follows:

(AjU... A, 1)UA, = (A U... 4, 1) UA,

=A,U...UA,_1UA,
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3. Let A C B C X be subsets. The closure of A in B is the intersection of all closed subsets of B which contain

A.
AP = ﬂ Y

Y C B clos
ACY

Aset Y C B is closed in B if and only if there exists Y’ C X closed such that Y =Y'NB. Now if A CY
then A C Y’ for Y =Y’ N B. So we can write:

A" = ﬂ Y

Y=Y'NBCB,Y’CX closed
ACY

= ﬂ Y'NB

Y/ CX closed
AcCy’

=ANB
O

Exercise 3. 1. Let V; = {1,3,5} C R and V2 = {1,2,3,4,5} C R. Compute I(V;) C Rlz] and I(V2) C R[z].
Prove I(V3) C I(V4).

2. Let V3 = {(0,0),(0,2),(1,0),(1,1),(1,-2)}, V4 = {(1,-1),(1,0), (0,0),(3,1),(0,2)} C R2.
Compute I(V3),I(Vy) C Rz, y] and I(Vz N Vy).

3. Let M # () be an arbitrary finite subset of R?. Find a polynomial f € R[z,y] such that M = V(f).
4. Consider Z C R. Compute I(Z) C R[z].

Solution:
1. We compute:
IWV1) ={f e Rlz][f(1) = 0,f(3) =0, f(5) = 0}

={f eR[z][(z = D)|f A (x = 3)|f A (x = 5)|f}
= ((z = 1)(z =3)(z - 5)) C R[z]

I(V2) = {f € R[z][f(1) = 0, f(2) = 0, f(3) = 0, f(4) = 0, f(5) = 0}
={f eR(x - DIf Az =2)|f(z =3)f Az —=4)|f A (z=5)f}
= ((z = 1D(z - 2)(z - 3)(z — 4)(z = 5)) C R[z]
Since the generator (x —1)(x —2)(x — 3)(x —4)(x —5) of I(V2) is contained in I(V}) = ((z —1)(x —3)(x —5))

= —

we have I (V) C I(V1). O
2. Compute:
I(Vs) = 1({(0,0),(0,2),(1,0),(1,1)})
= I({(0,0)} U{(0,2)} U{(1,0)} U{(1,1)})
= 1((0,0)) N 1((0,2)) N I((1,0)) N I((1,1))

(y)N(zy—2)N{z—-Ly)N{z—1y—1)

=z, y)N{zy-2))N({z-Ly) N{z-1y—1))

= (@® 2y — 2, 2y,4> = 29) N ((x = 1)*, (e = )(y — 1), 2y —y,4° — )
(@, 2y — 2z, 2y, 57 = 2y) N (& = 1)%, (x = ) (y = 1), (x — D)y, y* — y)
= (z,y° = 2y) N ((z - 1),4° — )
= (z(z = 1),2(4* — ), (v* = 29)(x = 1), (¥* = 29)(v* — )
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Here we used Lemma 1.3.5 (6) and the fact that the ideals are coprime. Also we simplified the set of generators
by removing superfluous polynomials.

We compute with a different approach: The first polynomial sets all possible values for the z-coordinate. With
the following polynomials we make the corresponding values of the y-coordinate explicit. Example: if x = 0 it
follows that (x — 1)(z — 3) # 0 so the remaining factor of the polynomial has to be zero and we can use this
to take the values of the y-coorindates belonging to = 0. For z = 0 there are two points in V4 namely: (0,0)
and (0,2). So the remaining factor for the second polynomial is y(y — 2).

I(V4) = I({(17 _1)7 (170)7 (0, 0)7 (37 1), (07 2)})
=(z(z —1(z—3),(z— Dz —3)yly — 2),z(z - 1)(y — 1),z(z - 3)(y + Ly)
Now we compute I(V5 N Vy):
I(V3 N V4) = I({(17O)7 (O’ 0)7 (07 2)})
= (z(z—1),(z = Dyly — 2),2y) D I(V3),1(Va).

8

O

3. Let M = {(a1,b1),...,(an,b,)} C R? be an arbitrary non-empty finite subset of R?. We want to construct a
polynomial f € R[x,y] such that M =V (f).
We start by thinking about a single point (a,b) € R2 We start with the two polynomials x — a and y — b
which both have to be zero to give us the required vanishing point. The polynomial (z —a) + (y — b) is a good
starting point since (a,b) € V((x — a) + (y — b)). But also (b,a) € V((z —a) + (y — b)), so we have not
finished yet. Since we are working over the real numbers we can use that squares are always non-negative and
try (z —a)? + (y — b)%. That way we prevent cancellations as before and each summand has to be zero in order
for the polynomial to be zero. So V((x — a)? + (y — b)?) = {(a,b)}.
Now for our finite set of arbitrary points we can just take the product of the polynomials we obtain for each of

the single points:
n

M= V([ —a)® + (y—b:)*)
=1
where [[i_; (& — ai)® + (y — b:)?) € Rz, y]. 0.

4. Consider Z C R. We want I(Z) C R[z].
Since Z is not finite we cannot use the same trick as in the previous exercise: For an infinite number of points
we will not obtain a polynomial but a power series.
By Lemma 1.3.5 we have I(A) = I(A). So we can also consider the closure of Z in R. The closure of Z is an
affine variety in R, i.e., the zero set of some polynomials in R[z]. Any polynomial in R[z] of degree at least one
can always only have finitely many zeroes, but Z is infinite. So I(Z) does not contain polynomials of degree one
or higher. However, I(Z) is not empty since, 0 € I(Z). Since non-zero constant polynomials have no zeroes at

all, it follows that I(Z) = 0. Furthermore we have shown: Z = R in the Zariski topology. O

Exercise 4.
Let A, B, C be finite groups and let

0sA5BL oo

be a short exact sequence of group homomorphisms, i.e., « is injective, § is surjective and ker(8) = im(«). Prove

|B| = |A]-|C].

Proof: We know that « is injective and [ is surjective and moreover im(a) = ker(f).

For any c € C the fibre 371(c) contains exactly | A| elements. Because: Since 3 is surjective there exists b € 37 1(c).
And since im(a) = ker(3) it follows that b + im(a) € 87!(c). As « is injective this implies that |37(c)| > |Al.
Assume x € B\ b+ im(«) is another element with 5(z) = ¢ then z — b € ker(8) = im(«) and thus z € b+ im(«).
Contradiction.

So [87*(c)| = |A]. Since B =, e 871 (c) it follows that |B| = |C| - |A]. O




