Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 3 - Solution

Exercise 1.

Let $X_{1}=V\left(x^{3}-3 x+2-y^{2}\right), X_{2}=V(x-1)$ be two varieties in \mathbb{C}^{2}. Make a sketch of the real part of $X_{1}, X_{2} \subset \mathbb{R}^{2}$ in the same coordinate system and compute $\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)} \subset \mathbb{C}[X, Y]$.

Solution: We know: $I\left(X_{1}\right)=\sqrt{\left\langle x^{3}-3 x+2-y^{2}\right\rangle}=\left\langle x^{3}-3 x+2-y^{2}\right\rangle$ and $I\left(X_{2}\right)=\sqrt{\langle x-1\rangle}=\langle x-1\rangle$,

because both polynomials are irreducible.

$$
\begin{aligned}
I\left(X_{1}\right)+I\left(X_{2}\right) & =\left\langle x^{3}-3 x+2-y^{2}\right\rangle+\langle x-1\rangle \\
& =\left\langle x^{3}-3 x+2-y^{2}, x-1\right\rangle \\
& =\left\langle\left(x^{2}+x-2\right)(x-1)-y^{2}, x-1\right\rangle \\
& =\left\langle y^{2}, x-1\right\rangle
\end{aligned}
$$

It follows:

$$
\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)}=\langle y, x-1\rangle
$$

Looking at the sketch we see that $X_{1} \cap X_{2}=\{(1,0)\}$ so $I\left(X_{1} \cap X_{2}\right)=\langle y, x-1\rangle$ which fits with Prop. 1.4.14.

Exercise 2.

Let K be a field. Consider the variety $V=V\left(Y^{2}-X^{3}\right)$ of the cuspidal cubic $Y^{2}-X^{3} \in K[X, Y]$. Let $K[V]$ be the coordinate ring of V. Prove

$$
K[V] \cong K\left[T^{2}, T^{3}\right]
$$

Proof: By definition $K[V]=K[X, Y] / I(V)$. For K is algebraically closed we know $I(V)=\sqrt{\left\langle Y^{2}-X^{3}\right\rangle}$ and since $Y^{2}-X^{3}$ is irreducible (by Ex. 3) $I(V)=\left\langle Y^{2}-X^{3}\right\rangle$.

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 3 - Solution

So we have $K[V]=K[X, Y] /\left\langle Y^{2}-X^{3}\right\rangle$. We consider the following K-algebra homomorphism:

$$
\begin{aligned}
\phi: K[X, Y] & \rightarrow K[T] \\
X & \mapsto T^{2} \\
Y & \mapsto T^{3}
\end{aligned}
$$

We compute image and kernel of ϕ :

$$
\begin{aligned}
\operatorname{im}(\phi) & =\{p \in K[T] \mid p \text { only contains exponents of } T \text { divisble by } 2 \text { or } 3\}=K\left[T^{2}, T^{3}\right] \\
\operatorname{ker}(\phi) & =\left\{p(X, Y) \in K[X, Y] \mid \phi(p)(T)=p\left(T^{2}, T^{3}\right)=0\right\}
\end{aligned}
$$

To compute the generators of the ideal $\operatorname{ker}(\phi)$ we use polynomial division in Y with $Y^{2}-X^{3}$ over $K[X][Y]$: We can write any $p \in K[X, Y]$ as

$$
p=g \cdot\left(Y^{2}-X^{3}\right)+Y \cdot r_{1}+r_{2}
$$

where $g \in K[X, Y]$ and $r_{1}, r_{2} \in K[X]$.
In particular we can write $p \in \operatorname{ker}(\phi)$ like this. It follows that:

$$
\begin{aligned}
0=\phi(p) & =\phi\left(g(X, Y) \cdot\left(Y^{2}-X^{3}\right)+Y \cdot r_{1}(X)+r_{2}(X)\right) \\
& =g\left(T^{2}, T^{3}\right) \cdot\left(\left(T^{3}\right)^{2}-\left(T^{2}\right)^{3}\right)+T^{3} \cdot r_{1}\left(T^{2}\right)+r_{2}\left(T^{2}\right) \\
& =T^{3} \cdot r_{1}\left(T^{2}\right)+r_{2}\left(T^{2}\right)
\end{aligned}
$$

Now $T^{3} \cdot r_{1}\left(T^{2}\right)$ contains only odd exponents of T while $r_{2}\left(T^{2}\right)$ contains only terms with even exponents of T. Therefore $T^{3} \cdot r_{1}\left(T^{2}\right)+r_{2}\left(T^{2}\right)=0$ implies $r_{1}=r_{2}=0$ and $\operatorname{ker}(\phi)=\left\langle Y^{2}-X^{3}\right\rangle$.
It follows:

$$
K[V]=K[X, Y] /\left\langle X^{3}-Y^{2}\right\rangle=K[X, Y] / \operatorname{ker}(\phi) \cong \operatorname{im}(\phi)=K\left[T^{2}, T^{3}\right]
$$

Exercise 3.

Let K be an algebraically closed field. Find all polynomials $f \in K\left[X_{1}, \ldots, X_{n}\right]$ for which $V\left(X_{n+1}^{2}-f\right) \subset K^{n+1}$ is irreducible. Prove your claim.

Proof: For $\operatorname{char}(K) \neq 2$ we claim that $V\left(X_{n+1}^{2}-f\right)$ is irreducible if and only if $f \in K\left[X_{1}, \ldots, X_{n}\right] \backslash\{0\}$ is not a square or $f=0$.
If $f=0$, then $V\left(X_{n+1}^{2}\right)=V\left(X_{n+1}\right)$ is irreducible. So lets assume $f \neq 0$.
Let $g \in K\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial, $g \neq 0$. Choose $f=g^{2}$. Then $X_{n+1}^{2}-f=X_{n+1}^{2}-g^{2}=\left(X_{n+1}-g\right)\left(X_{n+1}+g\right)$ is reducible with two different factors ($\operatorname{since} \operatorname{char}(K) \neq 2$). So $V\left(X_{n+1}^{2}-f\right)=V\left(X_{n+1}-g\right) \cup V\left(X_{n+1}+g\right)$ is reducible.
Now let $V\left(X_{n+1}^{2}-f\right)$ be reducible. (This implies $f \neq 0$ since for $f=0$ the variety is irreducible.) Since this variety is a hypersurface this implies that $X_{n+1}^{2}-f$ is reducible with two different factors, see Example 1.5.9. So we can write $X_{n+1}^{2}-f=g h$ with $g \neq h \in K\left[X, 1 \ldots, X_{n+1}\right]$ non-constant.
The degree of $g h$ in X_{n+1} is 2 . If the degree of g in X_{n+1} were 2 , then f would have to contain terms with X_{n+1}. Contradiction to $f \in K\left[X_{1}, \ldots, X_{n}\right]$.
So it follows that the degree of g and h in X_{n+1} has to be one: $\operatorname{deg}_{x_{n+1}}(g)=\operatorname{deg}_{x_{n+1}}(h)=1$. So we can write $g=p_{1} X_{n+1}+q_{1}, h=p_{2} X_{n+1}+q_{2}$ with $p_{1}, p_{2}, q_{1}, q_{2} \in K\left[X_{1}, \ldots, X_{n}\right]$. Then:

$$
\begin{aligned}
X_{n+1}^{2}-f & =g h=\left(p_{1} X_{n+1}+q_{1}\right)\left(p_{2} X_{n+1}+q_{2}\right) \\
& =p_{1} p_{2} X_{n+1}^{2}+\left(p_{1} q_{2}+p_{2} q_{1}\right) X_{n+1}+q_{2} q_{1}
\end{aligned}
$$

Comparing the right and left side of the equation above we see: $p_{1} p_{2}=1$ and $p_{1} q_{2}+p_{2} q_{1}=0$. It follows that $p_{1}, p_{2} \in K \backslash\{0\}$ and $q_{2}=-\frac{p_{2}}{p_{1}} q_{1}$.
So: $f=q_{2} q_{1}=-\frac{p_{2}}{p_{1}} q_{1}^{2}$. Since K is algebraically closed there exits $a \in K$ such that $a^{2}=-\frac{p_{2}}{p_{1}}$. Therefore $f=\left(a q_{1}\right)^{2}$.

Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 3 - Solution

Hence, For char $(K) \neq 2$ we have $X_{n+1}^{2}-f$ with $f \in K\left[X_{1}, \ldots, x_{n}\right]$ is irreducible if and only if f is not a square of a polynomial in $K\left[X_{1}, \ldots, X_{n}\right] \backslash\{0\}$ or $f=0$.

Looking at the above proof we see that the implication: $X_{n+1}^{2}-f$ reducible $\Rightarrow f$ is a square works exactly the same if $\operatorname{char}(K)=2$. Only now the two factors we obtain are the same because of $\left(X_{n+1}-g\right)=\left(X_{n+1}+g\right)$ in $\operatorname{char}(K)=2$.
We still know $V\left(X_{n+1}^{2}-f\right)$ is reducible if only if $X_{n+1}^{2}-f$ is reducible with different factors.
Considering the above, we know that $X_{n+1}^{2}-f$ reducible implies that f is a square, which in this case means, that $X_{n+1}^{2}-f$ is a square. Hence, $X_{n+1}^{2}-f$ is never product of two different factors in $\operatorname{char}(K)=2$, so for all $f \in K\left[X_{1}, \ldots, X_{n}\right]$ the variety $V\left(X_{n+1}^{2}-f\right)$ is irreducible.

Exercise 4.

Let K be a field and let $0 \rightarrow V_{0} \rightarrow \ldots \rightarrow V_{n} \rightarrow 0$ be an exact sequence of finite dimensional vector spaces over K. Prove:

$$
\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}\left(V_{i}\right)=0
$$

Proof: We write

$$
0 \xrightarrow{\phi_{-1}} V_{0} \xrightarrow{\phi_{0}} V_{1} \xrightarrow{\phi_{1}} \ldots \xrightarrow{\phi_{n-1}} V_{n} \rightarrow 0 .
$$

We know that

$$
0 \rightarrow \operatorname{ker}\left(\phi_{i}\right) \hookrightarrow V_{i} \xrightarrow{\phi_{i}} \operatorname{im}\left(\phi_{i}\right) \rightarrow 0
$$

is a short exact sequence. From linear algebra we know that for a K-linear map $\phi_{i}: V_{i} \rightarrow \operatorname{im}\left(\phi_{i}\right)$ the following holds: $\operatorname{dim}\left(V_{i}\right)=\operatorname{dim}\left(\operatorname{ker}\left(\phi_{i}\right)\right)+\operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)$. By the exactness of the long sequence we know:

$$
\operatorname{dim}\left(V_{i}\right)=\operatorname{dim}\left(\operatorname{im}\left(\phi_{i-1}\right)\right)+\operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)
$$

Now we can compute the sum:

$$
\begin{aligned}
\sum_{i=0}^{n-1}(-1)^{i} \operatorname{dim}\left(V_{i}\right) & =\sum_{i=0}^{n-1}(-1)^{i}\left(\operatorname{dim}\left(\operatorname{ker}\left(\phi_{i}\right)\right)+\operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i}\left(\operatorname{dim}\left(\operatorname{im}\left(\phi_{i-1}\right)\right)+\operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)\right) \\
& =\operatorname{dim}\left(\operatorname{im}\left(\phi_{-1}\right)\right)+\sum_{i=1}^{n-1}(-1)^{i} \operatorname{dim}\left(\operatorname{im}\left(\phi_{i-1}\right)\right)+\sum_{i=0}^{n-1}(-1)^{i}\left(\operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)\right) \\
\operatorname{dim}\left(\operatorname{im}\left(\phi_{-1}\right)\right)=0 & =\sum_{i=1}^{n-1}(-1)^{i} \operatorname{dim}\left(\operatorname{im}\left(\phi_{i-1}\right)\right)+\sum_{i=0}^{n-2}(-1)^{i}\left(\operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)\right)+(-1)^{n-1} \operatorname{dim}\left(\operatorname{im}\left(\phi_{n-1}\right)\right. \\
\operatorname{index} \operatorname{shift} & =\sum_{i=0}^{n-2}(-1)^{i+1} \operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)+\sum_{i=0}^{n-2}(-1)^{i}\left(\operatorname{dim}\left(\operatorname{im}\left(\phi_{i}\right)\right)\right)+(-1)^{n-1} \operatorname{dim}\left(\operatorname{im}\left(\phi_{n-1}\right)\right. \\
& =(-1)^{n-1} \operatorname{dim}\left(\operatorname{im}\left(\phi_{n-1}\right)\right. \\
\operatorname{im}\left(\phi_{n-1}\right)=V_{n} & =-(-1)^{n} \operatorname{dim}\left(V_{n}\right) \\
& \Rightarrow \sum_{i=0}^{n}(-1)^{i} \operatorname{dim}\left(V_{i}\right)=0
\end{aligned}
$$

