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Exercise 1.
Let X1 = V(23 -32+2—y?), Xo = V(2 —1) be two varieties in C2. Make a sketch of the real part of X;, X» C R?2

in the same coordinate system and compute 1/I(X;) + I(X2) C C[X,Y].

Solution: We know: I(X1) = /(23 =32 +2—42) = (2® -3z +2 —3y?) and I(X2) = /(z —1) = (z — 1),
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because both polynomials are irreducible.

3 =3 +2 -y +(x—1)
23 =3 +2—9% 2 —1)

I(X1) + 1(X2) = (
(

= (2 +2-2)(x—-1) -9z —1)
(

yQam_ 1>

It follows:
I(Xy) + I(X2) = (y,z — 1)

Looking at the sketch we see that X; N X5 = {(1,0)} so I(X; N X3) = (y,z — 1) which fits with Prop. 1.4.14.

Exercise 2.
Let K be a field. Consider the variety V = V(Y2 — X?3) of the cuspidal cubic Y2 — X3 € K[X,Y]. Let K[V] be the

coordinate ring of V. Prove
K[V] = K[T? T?.
Proof: By definition K[V] = K[X,Y]/I(V). For K is algebraically closed we know I(V) = /(Y2 — X3) and
since Y2 — X3 is irreducible (by Ex. 3) I(V) = (Y2 — X3).




Eberhard-Karls-Universitét Tiibingen Wintersemester 2020,/2021
Prof. Hannah Markwig 25. November 2020
Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry
Exercise Sheet 3 - Solution

So we have K[V] = K[X,Y]/(Y? — X3). We consider the following K-algebra homomorphism:

¢: K[X,Y] = KI[T]
X T2
Y 13

We compute image and kernel of ¢:

im(¢) = {p € K[T]|p only contains exponents of T divisble by 2 or 3} = K[T? T?
ker(¢) = {p(X,Y) € K[X,Y]|6(p)(T) = p(T*,T°) = 0}

To compute the generators of the ideal ker(¢) we use polynomial division in Y with Y2 — X3 over K[X][Y]: We can
write any p € K[X,Y] as
p=g - Y2=X3+Y -1 +ry

where g € K[X,Y] and r1,r € K[X].
In particular we can write p € ker(¢) like this. It follows that:

0=06(p) = d(g(X,Y) - (V? = X?) + ¥ - 11 (X) + 72(X))
=g(T%,1°) - (T°)* = (T%)°) + T% - 11 (T?) + 12(T?)
=T3 .1 (T?%) + ro(T?)

Now T - r1(T?) contains only odd exponents of T" while ro(7?) contains only terms with even exponents of T'.
Therefore T3 - r1(T?) + 72(T?) = 0 implies 71 = 72 = 0 and ker(¢) = (Y2 — X3).
It follows:

K[V] = K[X,Y]/(X® = Y?) = K[X,Y]/ker(¢) = im(¢) = K[T*,T°]

Exercise 3.
Let K be an algebraically closed field. Find all polynomials f € K[Xj,...,X,] for which V(X2 , — f) C K"t!is
irreducible. Prove your claim.

Proof: For char(K) # 2 we claim that V(X2,, — f) is irreducible if and only if f € K[X1,...,X,]\ {0} is
not a square or f = 0.

If f =0, then V(X2 ) = V(X,41) is irreducible. So lets assume f # 0.

Let g € K[X7, ..., X,,] be a polynomial, g # 0. Choose f = ¢g*. Then X2, — f = X2, —¢° = (Xp41—9)(Xn41+9)
is reducible with two different factors (since char(K) # 2). So V(X2 — f) = V(X1 — g) UV (Xpy1 + g) is re-
ducible.

Now let V/(X2,, — f) be reducible. (This implies f # 0 since for f = 0 the variety is irreducible.) Since this variety is
a hypersurface this implies that X2, — f is reducible with two different factors, see Example 1.5.9. So we can write
X2, — f=ghwith g # h € K[X 1..., X;,41] non-constant.

The degree of gh in X, 41 is 2. If the degree of g in X,,11 were 2, then f would have to contain terms with X, ;1.
Contradiction to f € K[X,..., X,,].

So it follows that the degree of g and % in X,, ;1 has to be one: deg, . (g9) = deg, . (h) = 1. So we can write
g=p1Xnt1 + @, h=p2Xpni1 + g2 with pi,p2,q1,92 € K[X1, ..., X,,]. Then:

X7’2L+1 —f=gh= D1 Xnt1+ @) P2 X0nt1 + ¢2)
=pip2X2i1 + (p1a2 + p2q1) X1 + 21

Comparing the right and left side of the equation above we see: p1ps = 1 and p1gs + p2q1 = 0. It follows that

p1,p2 € K\ {0} and g2 = —Z—fql.

So: f = qoq1 = —Z—‘fq% Since K is algebraically closed there exits a € K such that a? = —P2_ Therefore f = (aqr)?.
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Hence, For char(K) # 2 we have X2, — f with f € K[X1,...,z,] is irreducible if and only if f is not a square of a
polynomial in K[X7, ..., X,,] \ {0} or f =0.

Looking at the above proof we see that the implication: XEH — f reducible = f is a square works exactly the
same if char(K) = 2. Only now the two factors we obtain are the same because of (X,,11 — ¢) = (X,41 + g) in
char(K) = 2.

We still know V(X2 — f) is reducible if only if X2, — f is reducible with different factors.

Considering the above, we know that XfL_H — f reducible implies that f is a square, which in this case means,
that X2, — f is a square. Hence, X2, — f is never product of two different factors in char(K) = 2, so for all
f € K[Xy,...,X,] the variety V(X2 — f) is irreducible. O
Exercise 4.

Let K be a field and let 0 — Vy — ... — V,, — 0 be an exact sequence of finite dimensional vector spaces over K.

Prove:
n

> (=1 dim(V;) = 0.

i=0

Proof: We write

025 25 W 25 L Y, o

We know that
0 — ker(¢:) = Vi 25 im(¢:) — 0

is a short exact sequence. From linear algebra we know that for a K-linear map ¢; : V; — im(¢;) the following holds:
dim(V;) = dim(ker(¢;)) + dim(im(¢;)). By the exactness of the long sequence we know:

dim(V;) = dim(im(¢;—1)) + dim(im(¢;)).

Now we can compute the sum:

n—1 n—1

;(—W dim(V;) = g(—l)i(dim(ker(@)) + dim(im(¢)))
- 2(—1)i(dim(im(¢i1)) + dim(im(¢;)))
= dim(im(¢-1)) + 21(—1)2' dim(im(¢i-1)) + 2(—1)i(dim(im(¢i)))
aim(im(é_1)) = 0 = 2(—1)1‘ dim(im(¢; 1)) + 72:(_1)i(dim(im(¢i))) +(=1)" " dim(im(¢y-1)
indes shife == TVL_Z_j(—l)”1 dim(im(¢:)) + g(—l)i(dim(im(@))) +(=1)"" dim(im(¢n-1)

= (—1)" " dim(im(¢,—1)
im(¢p,_1) = Vn = —(—1)n dim(Vn)

=) (~1)dim(V;) =0
=0




