Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 3

Exercise 1.

Let $X_1 = V(x^3 - 3x + 2 - y^2)$, $X_2 = V(x - 1)$ be two varieties in \mathbb{C}^2 . Make a sketch of the real part of $X_1, X_2 \subset \mathbb{R}^2$ in the same coordinate system and compute $\sqrt{I(X_1) + I(X_2)} \subset \mathbb{C}[X, Y]$.

Exercise 2.

Let K be a field. Consider the variety $V = V(Y^2 - X^3)$ of the cuspidal cubic $Y^2 - X^3 \in K[X, Y]$. Let K[V] be the coordinate ring of V. Prove

$$K[V] \cong K[T^2, T^3].$$

Exercise 3.

Let K be an algebraically closed field. Find all polynomials $f \in K[X_1, \ldots, X_n]$ for which $V(X_{n+1}^2 - f) \subset K^{n+1}$ is irreducible. Prove your claim.

Exercise 4.

Let K be a field and let $0 \to V_0 \to \ldots \to V_n \to 0$ be an exact sequence of finite dimensional vector spaces over K. Prove:

$$\sum_{i=0}^{n} (-1)^{i} \dim(V_{i}) = 0.$$