Prof. Hannah Markwig
Alheydis Geiger

## Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 3

## Exercise 1.

Let $X_{1}=V\left(x^{3}-3 x+2-y^{2}\right), X_{2}=V(x-1)$ be two varieties in $\mathbb{C}^{2}$. Make a sketch of the real part of $X_{1}, X_{2} \subset \mathbb{R}^{2}$ in the same coordinate system and compute $\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)} \subset \mathbb{C}[X, Y]$.

## Exercise 2.

Let $K$ be a field. Consider the variety $V=V\left(Y^{2}-X^{3}\right)$ of the cuspidal cubic $Y^{2}-X^{3} \in K[X, Y]$. Let $K[V]$ be the coordinate ring of $V$. Prove

$$
K[V] \cong K\left[T^{2}, T^{3}\right] .
$$

## Exercise 3.

Let $K$ be an algebraically closed field. Find all polynomials $f \in K\left[X_{1}, \ldots, X_{n}\right]$ for which $V\left(X_{n+1}^{2}-f\right) \subset K^{n+1}$ is irreducible. Prove your claim.

## Exercise 4.

Let $K$ be a field and let $0 \rightarrow V_{0} \rightarrow \ldots \rightarrow V_{n} \rightarrow 0$ be an exact sequence of finite dimensional vector spaces over $K$. Prove:

$$
\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}\left(V_{i}\right)=0
$$

