Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 5

Exercise 1.

Let > be a monomial order on Mon_n. Prove that the following are equivalent:

- 1) > is global.
- 2) > is a well-ordering
- 3) $x_i > 1 \ \forall i = 1, \dots, n$
- 4) > refines \geq_{nat} , i.e. $\underline{x}^{\alpha} >_{nat} \underline{x}^{\beta} \Rightarrow \underline{x}^{\alpha} > \underline{x}^{\beta}$

Exercise 2. a) Prove that the set of monomials of K[X] has exactly two orders, one of which is global.

b) Prove that the set of monomials of K[X, Y] has uncountable many orders. *Hint:* Consider weighted degree reverse lexicographic orders.

Exercise 3.

Let K be an algebraically closed field. Let $A \subset K^n$ be an affine varieties and let $f : A \to K^m$, $a \mapsto (f_1(a), \ldots, f_m(a))$ be a polynomial map, so $f_1, \ldots, f_m \in K[X_1, \ldots, X_n]$. We write $K[X_1, \ldots, X_n]$ for the coordinate ring to K^n and $K[Y_1, \ldots, Y_m]$ for the coordinate ring to K^m . Prove: $\overline{f(A)} = V(\langle I(A), Y_1 - f_1, \ldots, Y_m - f_m \rangle_{K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]} \cap K[\underline{Y}])$.