Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 6

Exercise 1 (Product criterion).

Let K be a field, $>$ be a monomial order, $f, g \in K[\underline{x}], \operatorname{gcd}(\mathrm{LM}(f), \operatorname{LM}(g))=1$.
Show that there is a polynomials division with remainder of $\operatorname{spoly}(f, g)$ by (f, g) with remainder 0 .
Hint: Show first that $\operatorname{spoly}(f, g)=a_{0} f+b_{0} g$ for $a_{0}=-\operatorname{tail}(g)$ and $b_{0}=\operatorname{tail}(f)$ and then define recursively $a_{i}=\operatorname{tail}\left(a_{i-1}\right)$ and $b_{i}=\operatorname{tail}\left(b_{i-1}\right)$. Consider the maximal value N such that $u \cdot \operatorname{spoly}(f, g)=a_{N} f+b_{N} g$ for some element $u \in K[\underline{x}]^{*}$ and distinguish the two cases that $L T\left(a_{N} f\right)+L T\left(b_{N} g\right)$ vanishes respectively does not vanish.

Exercise 2.

The degree lexicographical ordering $>_{D p}$ on Mon $_{n}$ is defined by

$$
\underline{x}^{\alpha}>_{D p} \underline{x}^{\beta}: \Leftrightarrow|\alpha|>|\beta| \text { or }\left(|\alpha|=|\beta| \text { and } \exists k: \alpha_{1}=\beta_{1}, \ldots, \alpha_{k-1}=\beta_{k-1}, \alpha_{k}>\beta_{k}\right) .
$$

A polynomial $f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \underline{x}^{\alpha} \in K\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous if for all α with $a_{\alpha} \neq 0$ the absolute value $|\alpha|$ is constant.
Show that a monomial ordering $>$ on Mon $_{n}$ equals $>_{D p}$ if and only if $>$ is a degree ordering and for any homogeneous $f \in K[\underline{x}]$ with $\mathrm{LM}(f) \in K\left[x_{k}, \ldots, x_{n}\right]$ we have $f \in K\left[x_{k}, \ldots x_{n}\right], k=1, \ldots, n$.

Exercise 3.

Apply IDBuchberger to the following triple $(g, G,>)$:

$$
g=x^{4}+y^{4}+z^{4}+x y z, G=\{\partial g / \partial x, \partial g / \partial y, \partial g / \partial z\},>_{d p} .
$$

[^0]
[^0]: Submission: In groups of up to three students, until Wednesday, 16. December 2020, 12:00 o'clock via URM. You are allowed to submit your solutions in German.

