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Exercise 1.

Let R = Q[x, y, z]. Compute a Groebner basis of I = 〈xy − y, 2x2 + yz, y − z〉 ⊂ R with respect to the monomial
order >lp with x > z > y.

Solution: We apply the Groebner basis algorithm (2.3.8):
Set S0 = {xy − y, 2x2 + yz, y − z}. We write f1 = xy − y, f2 = 2x2 + yz, f3 = y − z.
We have P = {(xy− y, 2x2 + yz), (xy− y, y− z), (2x2 + yz, y− z)}. Before we start with the algorithm we consider
the set of pairs P . During the algorithm we will have to compute the spolys of the pairs and the remainder of an
indeterminate division of the spolys with S. Only those pairs with remainder not zero will be relevant for the algorithm.
By applying the product criterion we can delete those pairs (f, g) in P for which gcd(LM(f), LM(g)) = 1.
This happens for the pairs (f1, f3) and (f2, f3), since LM(f1) = xy, LM(f3) = z so gcd(xy, z) = 1 and LM(f2) = x2,
LM(f3) = z so gcd(x2, z) = 1.
So we can start the algorithm with P̃ = {(xy − y, 2x2 + yz)} instead of P .

1. Step: We compute spoly(f1, f2)

spoly(xy − y, 2x2 + yz) =
2x2

x
· (xy − y)− xy

x
· (2x2 + yz)

= 2x · (xy − y)− y · (2x2 + yz)

= −2xy − y2z

Now we compute the remainder of indeterminate division of−2xy−y2z with f1, f2, f3. We have LM(−2xy−y2z) = xy,
LM(f1) = xy, LM(f2) = x2, LM(f3) = z. So we start with LM(f1)|LM(−2xy − y2z). (Buchberger ID)

Set q1 = −2 and

r = −2xy − y2z − (−2)(xy − y) = −y2z − 2y

The leading monomial of the new r is y2z, which can be divided by LM(f3) = z.

Set q3 = −y2 and

r = −y2z − 2y − (y2)(y − z) = −2y − y3

Now LM(r) = y3 which does not get divided by any of the leading monomials of the fi. Since r 6= 0 we add
r = −2y − y3 to S0 and obtain S1 = {xy − y, 2x2 + yz, y − z,−2y − y3}.

2. Step: Compute the set of pairs. We now need only consider those pairs containing f4 = −2y − y3. So we have
P1 = {(xy−y,−2y−y3), (2x2+yz,−2y−y3), (y−z,−2y−y3)}. Again applying the product criterion we see that we
can delete the pairs (2x2+yz,−2y−y3), (y−z,−2y−y3) from P1. (The gcd of LM(2x2+yz) = x2, LM(−2y−y3) = y3

is one, as well as the gcd of LM(y − z) = z, LM(−2y − y3) = y3.) So we have P̃1 = {(xy − y,−2y − y3)}

Now we compute spoly(f1, f4).

spoly(xy − y,−y3 − 2y) =
−y3

y
· (xy − y)− xy

y
· (−y3 − 2y)

= −y2 · (xy − y)− x · (−y3 − 2y)

= y3 + 2xy

We need to compute the remainder of of indeterminate division of y3+2xy with f1, f2, f3, f4. (Buchberger ID) We have
LM(y3+2xy) = xy, LM(f1) = xy, LM(f2) = x2, LM(f3) = z, LM(f4) = y3. So we start with LM(f1)|LM(y3+2xy).
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Set q1 = 2 and

r = y3 + 2xy − 2(xy − y) = y3 + 2y

We see immediately that r = −f4 so

y3 + 2xy = 2f1 − f4 + r2 where r2 = 0.

Since we have checked all remaining pairs from P̃1, the algorithm terminates and S1 = {xy−y, 2x2+yz, y−z,−2y−y3}
is a Groebner basis of I with respect to the monomial order >lp with x > z > y. �.

Exercise 2.

Let I ⊂ K[x] be an ideal, > a global monomial ordering and B = Mon(x) ∩ (K[x] \ L(I)) the set of monomials
which are not in L(I) the leading ideal of I. Show that B is a K-vector space basis of K[x]/I.

Proof: By Corollary 2.3.3. there exists a Groebner basis G = (f1, . . . , fk) of I with respect to >. We want to
show B is a K-basis of K[x]/I.

Let g ∈ K[x]. It follows with Buchberger RedID that there exist q1, . . . , qk, r ∈ K[x] such that g =
∑k
i=1 qifi + r

and this satis�es ID1 and DD2.
So in particular no term or r is in 〈LM(fi)〉 = L(I). It follows that r ∈ 〈B〉K . Since g = r ∈ 〈B〉K , B generates
K[x]/I as a K-vector space.
It remains to show that B is linearly independent. Let

∑
b∈B abb = 0 with ab ∈ K for all b ∈ B. Then

∑
b∈B abb ∈ I,

so LM(
∑
b∈B abb) ∈ L(I).

As B ∩ L(I) = ∅ we have
∑
b∈B abb = 0, so ∀b : ab = 0. �

Exercise 3.

Show that the Groebner basis algorithm (2.3.8.) coincides with

a) the Euclidean algorithm when applied to two polynomials in K[t] with > being the unique well-ordering on K[t];

b) the Gaussian algorithm when applied to any �nite list of linear polynomials in K[x1, . . . , xn] with > being the
degree lexicographic ordering.

Recall: The degree lexicographical ordering >Dp on Monn is de�ned by

xα >Dp x
β :⇔ |α| > |β| or (|α| = |β| and ∃k : α1 = β1, . . . , αk−1 = βk−1, αk > βk).

Proof:

a) Let f, g ∈ K[t] be two polynomials. Note that the Euclidean algorithm gives us gcd(f, g), but the gcd is unique
up to units. So we should also think "modulo units" when we apply the Groebner basis algorithm.
Assume deg(f) ≤ deg(g). The Euclidean algorithm applied to the pair (f, g) gives us g = q1f + r1 for some
q1, r1 ∈ K[t].
With the Groebner basis algorithm we start with S = {f, g} and compute spoly(f, g), where we know

lcm(LM(f), LM(g)) = LM(g)

since deg(f) ≤ deg(g). We have

spoly(f, g) =
LT(g)

LM(f)
f − LC(f)g

⇒ LC(f)g =
LT(g)

LM(f)
f − spoly(f, g)
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Notice that a division of spoly(f, g) w.r.t. f, g is of the form q̃f + r̃ since in spoly(f, g) the leading term gets
cancelled and deg(g) ≥ deg(f).

⇒ LC(f)g =
LT(g)

LM(f)
f − (q̃f + r̃)

= (
LT(g)

LM(f)
− q̃)f + r̃

This representation satis�es DD1 and DD2, since we have a global monomial ordering and we only have one
variable and only one fi = f . By the uniqueness of determinate division, the remainder r̃ of this division is
r̃ = r1LC(f), where LC(f) is a unit in K[t]. So the remainders r̃ and r1 coincide up to a unit. So now we add
r1 to S. There are two steps when we continue:

1. Continue with spoly(f, r1). Since deg(r1) < deg(f) the argument from above applies and we obtain the
remainder r2 (up to units) that occurs in the euclidean algorithm: f = q2r1 + r2. Add r2 to S.

2. Continue with spoly(g, r1). Again this gives us the same remainder (up to units) that occurs when we
perform the second step of the euclidean algorithm with the "wrong pair" namely (g, r1). We already have
the remainder of the division with remainder of (f, r1), also we can express g via f and r1 (from above),
and have (in the �rst step) added r2 to S, this new step with (g, r1) will not give us a new element for S.
We repeat this procedure until the Groebner basis algorithm terminates. Since the polynomial we add to
S in each step is (up to units) one of the remainders form the euclidean algorithm, both algorithms will
terminate at the same time. �

b) W.l.og. all linear polynomials f1, . . . , fk have a non-zero coe�cient at x1. (We can assume this, since by
renumbering we can assume that f1 has a nonzero coe�cient at x1 and adding f1 to all other fi does not
change the ideal we are considering to obtain the Groebner basis, nor does adding the �rst row of the matrix to
all other rows change the outcome for the Gaussian algorithm.)
For all elements in the set of pairs (fi, fj) we have that spoly(fi, fj) is not divisible by LM(fi) = x1 = LM(fj)
since spoly cancelled the leading term, i.e. spoly starts with xa, a > 1. By Knowing that the fi all have the
same leading monomial we know that all the spoly(fi, fj) are linear.
Now for the �rst pair we pick in the set of pairs, the indeterminate division of spoly(fi, fj) with S = {f1, . . . , fk}
will have remainder spoly(fi, fj), since the leading monomial for all fi ∈ S at this point is x1 while spoly starts
with xa, a > 1. So we add this (w.l.o.g. spoly(f1, f2)) to S. Considering the coe�cient to xj in fi as the (i, j)-th
entry of the matrix, this means in terms of the Gauss algorithm that we add the coe�cients to spoly(f1, f2)
into an additional k + 1-th row.
While we continue to follow the algorithm, it is important to notice, that because we use the degree lexicographic
ordering, the remainder of the ID(spoly(fi, fj), S) in every step (so even when i or j /∈ {1, ..., k}) is linear!
All in all, adding the remainders by ID to S means adding a row which consists of "i-th row - LC(fi)

LC(fj)
· j-th row"

as we would expect from Gauss.
In the end we obtain a much too large matrix which (after possibly renumbering the rows) is in row echelon form.
The rows consist of f1, . . . , fk and all the added remainders which start with xa, a > 1 and by the renumbering
of the row, we ordered these polynomials in sets which start with a pivot at the same entry, i.e., have the the
same leading monomial.
We can now reduce our Groebner basis, by keeping one polynomial per leading monomial and deleting the others
from S. This corresponds to keeping one row for each pivot-column-entry and deleting those with the pivot at
the same column position. The next step of the reduced Groebner basis algorithm is to apply Buchberger RedID
which corresponds in the Gaussian algorithm to ensure that in each pivot-column the entries above the pivot
are zero. The last step of the reduced Groebner basis algorithm is to standardise the leading coe�cients of the
polynomials in S to 1, which is the same as multiplying the matrix with a diagonal matrix to ensure that all
pivot entries are 1. �


