Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 7

Exercise 1.

Let $R=\mathbb{Q}[x, y, z]$. Compute a Groebner basis of $I=\left\langle x y-y, 2 x^{2}+y z, y-z\right\rangle \subset R$ with respect to the monomial order $>_{l p}$ with $x>z>y$.

Exercise 2.

Let $I \subset K[\underline{x}]$ be an ideal, $>$ a global monomial ordering and $B=\operatorname{Mon}(\underline{x}) \cap(K[\underline{x}] \backslash L(I))$ the set of monomials which are not in $L(I)$ the leading ideal of I. Show that \bar{B} is a K-vector space basis of $K[\underline{x}] / I$.

Exercise 3.

Show that
a) the Groebner basis algorithm (2.3.8.) coincides with the Euclidean algorithm when applied to two polynomials in $K[t]$ with $>$ being the unique well-ordering on $K[t]$;
b) the reduced Groebner basis algorithm (2.3.9.) coincides with the Gaussian algorithm when applied to any finite list of linear polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$ with $>$ being the degree lexicographic ordering.

Recall: The degree lexicographical ordering $>_{D p}$ on Mon $_{n}$ is defined by

$$
\underline{x}^{\alpha}>_{D p} \underline{x}^{\beta}: \Leftrightarrow|\alpha|>|\beta| \text { or }\left(|\alpha|=|\beta| \text { and } \exists k: \alpha_{1}=\beta_{1}, \ldots, \alpha_{k-1}=\beta_{k-1}, \alpha_{k}>\beta_{k}\right)
$$

[^0]
[^0]: Submission: In groups of up to three students, until Wednesday, 23. December 2020, 12:00 o'clock via URM. You are allowed to submit your solutions in German.

