Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 7

Exercise 1.

Let $R = \mathbb{Q}[x, y, z]$. Compute a Groebner basis of $I = \langle xy - y, 2x^2 + yz, y - z \rangle \subset R$ with respect to the monomial order $>_{lp}$ with x > z > y.

Exercise 2.

Let $I \subset K[\underline{x}]$ be an ideal, > a global monomial ordering and $B = Mon(\underline{x}) \cap (K[\underline{x}] \setminus L(I))$ the set of monomials which are not in L(I) the leading ideal of I. Show that \overline{B} is a K-vector space basis of $K[\underline{x}]/I$.

Exercise 3.

Show that

- a) the Groebner basis algorithm (2.3.8.) coincides with the *Euclidean algorithm* when applied to two polynomials in K[t] with > being the unique well-ordering on K[t];
- b) the reduced Groebner basis algorithm (2.3.9.) coincides with the *Gaussian algorithm* when applied to any finite list of linear polynomials in $K[x_1, \ldots, x_n]$ with > being the degree lexicographic ordering.

Recall: The degree lexicographical ordering $>_{Dp}$ on Mon_n is defined by

 $\underline{x}^{\alpha} >_{Dp} \underline{x}^{\beta} :\Leftrightarrow |\alpha| > |\beta| \text{ or } (|\alpha| = |\beta| \text{ and } \exists k : \alpha_1 = \beta_1, \dots, \alpha_{k-1} = \beta_{k-1}, \alpha_k > \beta_k).$