Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Exercise Sheet 8

Exercise 1.

Let $f, g \in K[x]$, the polynomial ring in one variable. Express the greatest common divisor and the least common multiple of f and g in terms of elements in $\operatorname{syz}(f, g)$ and derive an algorithm to compute these, assuming we can compute a Gröbner basis of $\operatorname{syz}(f, g)$.

Exercise 2.

Let

$$
V=V\left((x+y) \cdot(x-y) \cdot\left(x+z^{2}\right)\right) \subset \mathbb{C}^{3}
$$

and

$$
W=V\left(\left(x+z^{2}\right) \cdot(x-y) \cdot(z+y)\right) \subset \mathbb{C}^{3}
$$

Draw sketches of V and W in \mathbb{R}^{3}, and try to guess the ideal of $\bar{V} W$. How could you verify your guess? Answer with an approriate algorithm and describe the steps accurately without doing all the computations.

Exercise 3. a) Is the polynomial $f=x^{7}+x^{2}$ in the radical of $I=\left\langle x^{11}+x^{6}, y x^{4}+x^{8}, y^{3}+x^{2}\right\rangle$? Use algorithm 2.5.5 to prove your claim.

Hint: Eliminate y first.
b) Let $I=\left\langle x^{2}+2 y^{2}-3, x^{2}+x y+y^{2}-3\right\rangle \subset \mathbb{Q}[x, y]$. Compute $I \cap \mathbb{Q}[y]$.

