Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 8

Exercise 1.

Let $f, g \in K[x]$, the polynomial ring in one variable. Express the greatest common divisor and the least common multiple of f and g in terms of elements in $\operatorname{syz}(f, g)$ and derive an algorithm to compute these, assuming we can compute a Gröbner basis of $\operatorname{syz}(f, g)$.

Solution: Let $d=\operatorname{gcd}(f, g)$, then there exist $k, l \in K[x]$ such that $f=k d, g=l d$. The element $\binom{-l}{k}$ is then an element in $\operatorname{syz}(f, g)$ which determines the gcd of f and g uniquely (up to units).
Let $c=\operatorname{Icm}(f, g)$ then there exist $a, b \in K[x]$ such that $a f=c, b g=c$ and the element $\binom{a}{-b}$ is in $\operatorname{syz}(f, g)$ and determines the Icm uniquely (up to units).
We show first, that for any $f, g \in K[x]$ the syzygy module $\operatorname{syz}(f, g)$ is a rank one module, i.e., generated by one element.
Let $\binom{\alpha}{\beta} \in \operatorname{syz}(f, g)$. Then

$$
\begin{aligned}
\alpha f & =-\beta g \\
\Rightarrow \alpha \frac{f}{\operatorname{gcd}(f, g)} & =-\beta \frac{g}{\operatorname{gcd}(f, g)}
\end{aligned}
$$

Since $\frac{f}{\operatorname{gcd}(f, g)}$ and $\frac{g}{\operatorname{gcd}(f, g)}$ are coprime, we see that α is a multiple of $\frac{g}{\operatorname{gcd}(f, g)}$ and β is a multiple of $\frac{f}{\operatorname{gcd}(f, g)}$.
Since $K[x]$ is a factorial ring, we can use primefactorization. Together with $\alpha f=-\beta g$ it follows that the factor for both α and β is the same.

$$
\alpha=d \cdot \frac{g}{\operatorname{gcd}(f, g)}, \beta=-d \cdot \frac{f}{\operatorname{gcd}(f, g)} .
$$

As $\binom{\alpha}{\beta}$ was a random element in $\operatorname{syz}(f, g)$ it follows that $\operatorname{syz}(f, g)=\left\langle\binom{\frac{g}{\operatorname{gcd}(f, g)}}{-\frac{f}{\operatorname{gcd}(f, g)}}\right\rangle$.
Furthermore, this generating set is a reduced Gröbner basis of $\operatorname{syz}(f, g)$ (since it consists of only one element). Thus, it is unique up to units.

Algorithm:

INPUT: $f, g \in K[\underline{x}]$
OUPUT: $(\operatorname{lcm}(f, g), \operatorname{gcd}(f, g))$
INSTRUCTIONS:

- Compute a reduced Gröbner basis $S=\left(\binom{a}{b}\right)$ of $\operatorname{syz}(f, g)$.
- $\operatorname{lcm}(f, g)=a f, \operatorname{gcd}(f, g)=\frac{f g}{\operatorname{lcm}(f, g)}$

Return $(\operatorname{lcm}(f, g), \operatorname{gcd}(f, g))$.

Exercise 2.

Let

$$
V=V\left((x+y) \cdot(x-y) \cdot\left(x+z^{2}\right)\right) \subset \mathbb{C}^{3}
$$

and

$$
W=V\left(\left(x+z^{2}\right) \cdot(x-y) \cdot(z+y)\right) \subset \mathbb{C}^{3} .
$$

Draw sketches of V and W in \mathbb{R}^{3}, and try to guess the ideal of $\overline{V \backslash W}$. How could you verify your guess? Answer with an approriate algorithm and describe the steps accurately without doing all the computations.

Proof: We rewrite V and W :

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 8

(a) $V \cap \mathbb{R}^{3}$

(b) $W \cap \mathbb{R}^{3}$

Abbildung 1

$$
\begin{aligned}
V & =V\left((x+y) \cdot(x-y) \cdot\left(x+z^{2}\right)\right) \\
& =V(x+y) \cup V(x-y) \cup V\left(x+z^{2}\right) \\
W & =V\left(\left(x+z^{2}\right) \cdot(x-y) \cdot(z+y)\right) \\
& =V\left(x+z^{2}\right) \cup V(x-y) \cup V(z+x)
\end{aligned}
$$

For the sketch see Figure 1.
The variety $V(x+y)$ does not seem to be contained in W so we guess $\overline{V \backslash W}=V(x+y)$.
We need to verify this claim by checking $I=\sqrt{I}$ (1.5.13) and computing the ideal quotient $(I: J)$ of

$$
I=\left\langle(x+y) \cdot(x-y) \cdot\left(x+z^{2}\right)\right\rangle=\left\langle x^{3}+x^{2} z^{2}-x y^{2}-y^{2} z^{2}\right\rangle
$$

and

$$
J=\left\langle\left(x+z^{2}\right) \cdot(x-y) \cdot(z+y)\right\rangle=\left\langle x^{2} z+{ }^{2} y-x y z-x y^{2}+z^{3}+y z^{2}-y z^{3}-y^{2} z^{2}\right\rangle
$$

Since I is a principal ideal, we know that for some $r \in \sqrt{I}$ here is an $n \in \mathbb{N}, f \in K[x, y, z]$ such that $r^{n}=$ $f(x+y)(x-y)\left(x+z^{2}\right)$. Since they are prime elements $(x+y),(x-y),\left(x+z^{2}\right)$ all have to divide r, so $r \in I$ and $I=\sqrt{I}$.
Computing the ideal quotient $(I: J)$ using Variant 1 of algorithm 2.5.9, we first compute a Gröbner basis for $I \cap J$ with algorithm 2.5.7. For that we have to eliminate t from

$$
G=\left\langle t \cdot\left(x^{3}+x^{2} z^{2}-x y^{2}-y^{2} z^{2}\right),(1-t)\left(x^{2} z+x^{2} y-x y z-x y^{2}+z^{3}+y z^{2}-y z^{3}-y^{2} z^{2}\right)\right\rangle
$$

We choose $>_{l p}$ with $t>x>y$ as our global elimination order and compute a Gröbner basis B of G.
We write $B=\left(g_{1}, \ldots, g_{k}\right)$ for some k and $g=x^{2} z+{ }^{2} y-x y z-x y^{2}+z^{3}+y z^{2}-y z^{3}-y^{2} z^{2}$ (then $J=\langle g\rangle$.) We then set $g_{i}^{\prime}=\frac{g_{i}}{g}$ and $S=\left(g_{1}^{\prime}, \ldots g_{k}^{\prime}\right)$. This is a generating set of $I: J$ by algorithm 2.5.9.

Exercise 3. a) Is the polynomial $f=x^{7}+x^{2}$ in the radical of $I=\left\langle x^{11}+x^{6}, y x^{4}+x^{8}, y^{3}+x^{2}\right\rangle$? Use algorithm 2.5.5 to prove your claim.

Hint: Eliminate y first.
Solution: Since $f \in K[x]$, we know that $f \in \sqrt{I}$ if and only if $f \in \sqrt{I \cap K[x]}$.

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 8

We choose the global elimination monomial ordering $>_{l p}$ with $y>x$ and compute a grobner basis for I.

$$
\begin{aligned}
f_{1} & =x^{11}+x^{6} \\
f_{2} & =y x^{4}+x^{8} \\
f_{3} & =y^{3}+x^{2} \\
P=\left\{\left(f_{1}, f_{2}\right),\left(f_{1}, f_{3}\right),\left(f_{2}, f_{3}\right)\right\} &
\end{aligned}
$$

Using product criterion we eliminate $\left(f_{1}, f_{3}\right)$

$$
\begin{aligned}
\operatorname{spoly}\left(f_{1}, f_{2}\right) & =y\left(x^{11}+x^{6}\right)-x^{7}\left(y x^{4}+x^{8}\right) \\
& =-x^{15}+y x^{6} \\
\operatorname{LM}\left(f_{2}\right) \mid \operatorname{LM}\left(-x^{15}+y x^{6}\right) & \\
q_{2} & =x^{2} \\
r & =y x^{6}-x^{15}-x^{2}\left(y x^{4}+x^{8}\right) \\
& =-x^{15}-x^{10}=-x^{4}\left(x^{11}+x^{6}\right) \\
\Rightarrow P=\left\{\left(f_{2}, f_{3}\right)\right\} & \\
\operatorname{spoly}\left(f_{2}, f_{3}\right) & =y^{2}\left(y x^{4}+x^{8}\right)-x^{4}\left(y^{3}+x^{2}\right) \\
& =y^{2} x^{8}-x^{6} \\
\operatorname{LM}\left(f_{2}\right) \mid \operatorname{LM}\left(y^{2} x^{8}-x^{6}\right) & \\
q_{2} & =y x^{4} \\
r & =y^{2} x^{8}-x^{6}-y x^{4}\left(y x^{4}+x^{8}\right) \\
& =-x^{6}-y x^{12} \\
q_{2} & =y x^{4}-x^{8} \\
r & =-x^{6}-y x^{12}+x^{8}\left(y x^{4}+x^{8}\right) \\
& =-x^{16}+x^{6} \\
q_{1} & =-x^{5} \\
r & =-x^{16}+x^{6}+x^{5}\left(x^{11}+x^{6}\right) \\
& =x^{6}+x^{11}=f_{1} \\
\Rightarrow P=\emptyset &
\end{aligned}
$$

So I is already given by a Gröbner basis. Hence $I \cap K[x]=\left\langle x^{11}+x^{6}\right\rangle$.
Now we apply Algorithm 2.5 .5 to $f=x^{7}+x^{2}$ and $J=\left\langle x^{11}+x^{6}\right\rangle$.
We choose $>_{l p}$ with $t>x$ as the global elimination order. We need to compute a minimal Gröbner basis for

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 8

$$
\begin{aligned}
&\left\langle x^{11}+x^{6}, 1-t\left(x^{7}+x^{2}\right)\right\rangle \\
& f_{1}=x^{11}+x^{6} \\
& f_{2}=1-t\left(x^{7}+x^{2}\right) \\
& S=\left\{f_{1}, f_{2}\right\} \\
& P=\left\{\left(f_{1}, f_{2}\right)\right\} \\
& \operatorname{spoly}\left(f_{1}, f_{2}\right)=-t\left(x^{11}+x^{6}\right)-x^{4}\left(1-t\left(x^{7}+x^{2}\right)\right) \\
&=-x^{4}
\end{aligned}
$$

this cannot be divided by any Leading monomial in S so we add it to it.

$$
\begin{aligned}
f_{3} & =-x^{4} \\
S & =\left\{f_{1}, f_{2}, f_{3}\right\} \\
P & =\left\{\left(f_{1}, f_{3}\right),\left(f_{2}, f_{3}\right)\right\} \\
\operatorname{spoly}\left(f_{1}, f_{3}\right) & =-\left(x^{11}+x^{6}\right)+x^{7}\left(x^{4}\right) \\
& =-x^{6}
\end{aligned}
$$

$\operatorname{LM}\left(f_{3}\right) \mid x^{6} \Rightarrow q_{3}=x^{2}$
$r=-x^{6}-x^{2} x^{4}=0$

$$
\begin{aligned}
\operatorname{spoly}\left(f_{2}, f_{3}\right) & =\left(-t\left(x^{7}+x^{2}\right)+1\right)+t x^{3}\left(x^{4}\right) \\
& =-t x^{2}+1
\end{aligned}
$$

this cannot be divided by any Leading monomial in S so we add it to it.

$$
\begin{aligned}
f_{4} & =-t x^{2}+1 \\
S & =\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\} \\
P & =\left\{\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right)\right\} \\
\operatorname{spoly}\left(f_{1}, f_{4}\right) & =t\left(x^{11}+x^{6}\right)+x^{9}\left(-t x^{2}+1\right) \\
& =t x^{6}+x^{9} \\
\operatorname{LM}\left(f_{3}\right) \mid t x^{6} & \\
r & =t x^{6}+x^{9}-t x^{2} x^{4}=x^{9}=x^{5}\left(x^{4}\right) \\
\operatorname{spoly}\left(f_{2}, f_{4}\right) & =-\left(-t\left(x^{7}+x^{2}\right)+1\right)+x^{5}\left(-t x^{2}+1\right) \\
& =t x^{2}-1+x^{5} \\
\operatorname{LM}\left(f_{4}\right) \mid t x^{2} & \\
r & =t x^{2}-1+x^{5}-t x^{2}+1=x^{5}=x\left(x^{4}\right) . \\
\operatorname{spoly}\left(f_{3}, f_{4}\right) & =-t\left(-x^{4}\right)+x^{2}\left(-t x^{2}+1\right) \\
& =x^{2}
\end{aligned}
$$

this cannot be divided by any Leading monomial in S so we add it to it.

$$
\begin{aligned}
f_{5} & =x^{2} \\
S & =\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\} \\
P & =\left\{\left(f_{1}, f_{5}\right),\left(f_{2}, f_{5}\right),\left(f_{3}, f_{5}\right),\left(f_{4}, f_{5}\right)\right\} \\
\operatorname{spoly}\left(f_{1}, f_{5}\right) & =x^{11}+x^{6}-x^{9}\left(x^{2}\right)=x^{6}=x^{2} x^{4} \\
\operatorname{spoly}\left(f_{2}, f_{5}\right) & =-t\left(x^{7}+x^{2}\right)+1+t x^{5}\left(x^{2}\right)=-t x^{2}+1=f_{4} \\
\operatorname{spoly}\left(f_{3}, f_{5}\right) & =-x^{4}+x^{2}\left(x^{2}\right)=0 \\
\operatorname{spoly}\left(f_{4}, f_{5}\right) & =-t x^{2}+1+t\left(x^{2}\right)=1
\end{aligned}
$$

\Rightarrow So we have to add 1 to S.
$P=\emptyset$. (here we use that by the product criterion with 1 there is always polynomial division with remainder 0

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 8

So $S=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, 1\right\}$ is a Gröbner basis for $\left\langle x^{11}+x^{6}, 1-t\left(x^{7}+x^{2}\right)\right\rangle$. For the algorithm we need a minimal Gröbner basis, but we can already see that 1 will still be contained in the reduced Gröbner basis, so the output of the algorithm will be 1, i.e., $f \in \sqrt{I}$.
b) Let $I=\left\langle x^{2}+2 y^{2}-3, x^{2}+x y+y^{2}-3\right\rangle \subset \mathbb{Q}[x, y]$. Compute $I \cap \mathbb{Q}[y]$.

Solution: We choose the gloabl elimination ordering $>_{l p}$ with $x>y$. We compute a Gröbner basis of I.

$$
\begin{aligned}
f_{1} & =x^{2}+2 y^{2}-3 \\
f_{2} & =x^{2}+x y+y^{2}-3 \\
S & =\left\{f_{1}, f_{2}\right\} \\
P & =\left\{\left(f_{1}, f_{2}\right)\right\} \\
\operatorname{spoly}\left(f_{1}, f_{2}\right) & =f_{1}-f_{2}=x^{2}+2 y^{2}-3-\left(x^{2}+x y+y^{2}-3\right) \\
& =y^{2}-x y
\end{aligned}
$$

this cannot be divided by any Leading monomial in S so we add it to it.

$$
\begin{aligned}
f_{3} & =-x y+y^{2} \\
S & =\left\{f_{1}, f_{2}, f_{3}\right\} \\
P & =\left\{\left(f_{1}, f_{3}\right),\left(f_{2}, f_{3}\right)\right\} \\
\operatorname{spoly}\left(f_{1}, f_{3}\right) & =-y f_{1}-x f_{3}=-y x^{2}-2 y^{3}+3 y-x\left(-x y+y^{2}\right) \\
& =-2 y^{3}+3 y-x y^{2} \\
q_{3} & =y \\
r & =-x y^{2}-2 y^{3}+3 y-y\left(-x y+y^{2}\right) \\
& =-2 y^{3}+3 y-y\left(y^{2}\right) \\
& =-3 y^{3}+3 y
\end{aligned}
$$

this cannot be divided by any Leading monomial in S so we add it to it.

$$
\begin{aligned}
f_{4} & =-3 y^{3}+3 y \\
S & =\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\} \\
P & =\left\{\left(f_{2}, f_{3}\right),\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right)\right\}
\end{aligned}
$$

use Product criterion to delete $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right)$

$$
\begin{aligned}
P & =\left\{\left(f_{2}, f_{3}\right),\left(f_{3}, f_{4}\right)\right\} \\
\operatorname{spoly}\left(f_{2}, f_{3}\right) & =-y f_{2}-x f_{3}=-y\left(x^{2}+x y+y^{2}-3\right)-x\left(-x y+y^{2}\right) \\
& =-2 x y^{2}-y^{3}+3 y \\
q_{3} & =2 y \\
r & =-2 x y^{2}-y^{3}+3 y-2 y\left(-x y+y^{2}\right) \\
& =-y^{3}+3 y-2 y^{3}=-3 y^{3}+3 y=f_{4} \\
\operatorname{spoly}\left(f_{3}, f_{4}\right) & =-3 y^{2} f_{3}+x f_{4}=-3 y^{2}\left(-x y+y^{2}\right)+x\left(-3 y^{3}+3 y\right) \\
& =-3 y^{4}+3 x y \\
q_{3} & =-3 \\
r & =-3 y^{4}+3 x y+3\left(-x y+y^{2}\right) \\
& =-3 y^{4}+3 y^{2}=y\left(-3 y^{3}+3 y\right)=y f_{4} \\
\Rightarrow P=\emptyset &
\end{aligned}
$$

So a Gröbner basis of I is given by $S=\left\{x^{2}+2 y^{2}-3, x^{2}+x y+y^{2}-3,-x y+y^{2},-3 y^{3}+3 y,\right\}$. The only element of this Gröbner basis that has leading monomial in $\mathbb{Q}[y]$ is $-3 y^{3}+3 y$. So $I \cap \mathbb{Q}[y]=\left\langle-3 y^{3}+3 y\right\rangle$.

