Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 9

Exercise 1.

Let K be an algebraically closed field, $A:=K\left[T_{1}, T_{2}\right] /\left\langle T_{1} \cdot T_{2}\right\rangle$ and $f \in A$ the equivalence class of T_{1}. Prove: $A_{f} \cong K[T]_{T}$.

Proof: First we prove that for a ring R with ideal $I \subset R$ and multiplicatively closed set $S \subset R$ the following holds:

$$
\bar{S}^{-1}(R / I)=S^{-1} R / S^{-1} I
$$

where \bar{S} is the set of residue classes of elements of S modulo I. If $S \cap I \neq \emptyset$ we have $S^{-1} R=0$ and then $\bar{S}=0$ as well, which means $\bar{S}^{-1}(R / I)$, so we can write S instead of \bar{S} in the following.
Consider the exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$. If the corresponding localised sequence $0 \rightarrow S^{-1} I \rightarrow$ $S^{-1} R \rightarrow S^{-1}(R / I) \rightarrow 0$ is also exact, the claim follows from the Homomorphism Theorem. So we need to prove that $\operatorname{im}\left(S^{-1} I \rightarrow S^{-1} R\right)=\operatorname{ker}\left(S^{-1} R \rightarrow S^{-1}(R / I)\right)$ (exactness at the other two steps follows directly from the definition of the maps). Denote $\varphi: I \rightarrow R, \psi: R \rightarrow R / I$, then $S^{-1} I \rightarrow S^{-1} R$ is given by $S^{-1} \varphi$ and $S^{-1} R \rightarrow S^{-1}(R / I)$ is given by $S^{-1} \psi$, where $S^{-1} \varphi\left(\frac{r}{s}\right)=\frac{\varphi(r)}{s}$ and analogously for $S^{-1} \psi$. These are again ringhomorphisms.

$$
\begin{gathered}
S^{-1} \varphi: S^{-1} I \rightarrow S^{-1} R \\
S^{-1} \psi: S^{-1} R \rightarrow S^{-1}(R / I)
\end{gathered}
$$

$\operatorname{im}\left(S^{-1} \varphi\right) \subset \operatorname{ker}\left(S^{-1} \psi\right):$

$$
S^{-1} \psi \circ S^{-1} \varphi=S^{-1}(\psi \circ \varphi)=0_{\text {map }}
$$

$\operatorname{im}\left(S^{-1} \varphi\right) \supset \operatorname{ker}\left(S^{-1} \psi\right)$: Let $\frac{r}{s} \in \operatorname{ker}\left(S^{-1} \psi\right)$. Then $\frac{0}{1}=S^{-1} \psi\left(\frac{r}{s}\right)=\frac{\psi(r)}{s}$, which is an identity in $S^{-1}(R / I)$.
$\Rightarrow \exists \bar{u} \in \bar{S}: \bar{u} \cdot \overline{1} \cdot \psi(r)=\bar{u} \cdot \bar{s} \cdot \overline{0}=\overline{0}$. Furthermore $\exists u \in S: \psi(u)=\bar{u}$
$\Rightarrow u \cdot r \in \operatorname{ker}(\psi)=\operatorname{im}(\varphi)$
$\Rightarrow \exists m \in I: \varphi(m)=u \cdot r$
$\Rightarrow \frac{r}{s}=\frac{u r}{u s}=\frac{\varphi(m)}{u s}=S^{-1} \varphi\left(\frac{m}{u s}\right) \in \operatorname{im}\left(S^{-1} \varphi\right)$.
Applying this to the situation in the exercise we set $S=\left\{T_{1}^{n} \mid n \in \mathbb{N}\right\}$ and obtain: $A_{f} \cong S^{-1} K\left[T_{1}, T_{2}\right] / S^{-1}\left\langle T_{1} \cdot T_{2}\right\rangle$. Now we can compute

$$
\begin{aligned}
S^{-1}\left\langle T_{1} \cdot T_{2}\right\rangle & =\left\{\left.\frac{g \cdot T_{1} \cdot T_{2}}{T_{1}^{n}} \right\rvert\, g \in K\left[T_{1}, T_{2}\right], n \in \mathbb{N}\right\} \\
& =\left\langle T_{2}\right\rangle_{T_{1}} \\
& =S^{-1}\left\langle T_{2}\right\rangle
\end{aligned}
$$

Since $S^{-1} K\left[T_{1}, T_{2}\right]=K\left[T_{1}, T_{2}\right]_{T_{1}}$ we obtain the following isomorphism:

$$
A_{f} \cong S^{-1} K\left[T_{1}, T_{2}\right] / S^{-1}\left\langle T_{1} \cdot T_{2}\right\rangle=K\left[T_{1}, T_{2}\right]_{T_{1}} /\left\langle T_{2}\right\rangle_{T_{1}} \cong K\left[T_{1}\right]_{T_{1}} \cong K[T]_{T}
$$

Exercise 2.

Let R be a commutative ring with one and let $S \subset R$ be multiplicatively closed. Show: If R is noetherian, then $S^{-1} R$ is noetherian.

Proof: Let R be a noetherian commutative ring with one and let $S \subset R$ be multiplicatively closed.
We prove the following lemma: If J is an ideal in $S^{-1} R$, then $J=S^{-1}(J \cap R)$.
Let $a \in S^{-1}(J \cap R)$. So $a=\frac{r}{s}$ with $r \in R \cap J, s \in S$. In particular, $a \in J \subset S^{-1} R$.
Let $\frac{r}{s} \in J \subset S^{-1} R$. Then $\frac{r}{1}=\frac{s}{1} \cdot \frac{r}{s} \in J$ so $r \in J \cap R$. Thus $\frac{r}{s} \in S^{-1}(J \cap R)$.
Now let

$$
J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \ldots
$$

Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 9

be an ascending chain of ideals in $S^{-1} R$. Then $I_{n}=J_{n} \cap R$ is an ideal in R for all $n \in \mathbb{N}$. The inclusions are maintained so

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots
$$

is an ascending chain of ideals in R.
$\Rightarrow \exists k \in \mathbb{N}: I_{k}=I_{m} \forall m \geq k$
Since $S^{-1}\left(J_{n} \cap R\right)=J_{n}$ by the lemma we proved in the beginning, it follows that $J_{k}=S^{-1} I_{k}=S^{-1} I_{m}=J_{m}$ for all $m \geq k$. So $S^{-1} R$ is noetherian.

Exercise 3.

Let K be an algebraically closed field. Determine the algebra of regular functions $\mathcal{O}\left(U_{i}\right)$ for the following open sets U_{i} :

- $U_{1}=K \backslash\{0\} \subset K$,
- $U_{2}=K^{\times} \times K \subset K^{2}$,
- $U_{3}=K^{\times} \times K^{\times} \subset K^{2}$.

Solution: First we note, that $K[K]\left(=K\left[\mathbb{A}_{K}\right]\right)=K[x]$ and that $K\left[K^{2}\right]\left(=K\left[\mathbb{A}_{K}^{2}\right]\right)=K\left[x_{1}, x_{2}\right]$.

- $U_{1}=K \backslash\{0\} \subset K$:

By Definition 3.2.3 we know that $\mathcal{O}\left(U_{1}\right)=\left\{f: U_{1} \rightarrow K\right.$ regular $\}$. We can write $K \backslash\{0\}=K \backslash V(x)=D(x)$. Using 3.2.9 we obtain $\mathcal{O}\left(U_{1}\right)=\mathcal{O}(K \backslash\{0\})=K[x]_{x}$.

- We use that $U_{2}=K^{\times} \times K=K^{2} \backslash\{(0, a) \mid a \in K\}=K^{2} \backslash V\left(x_{1}\right)$ when we associate x_{1} with the first cooordinate and x_{2} with the second. Again using 3.2.9 we obtain $\mathcal{O}\left(U_{2}\right)=K\left[x_{1}, x_{2}\right]_{x_{1}}$.
- We use that $U_{3}=K^{\times} \times K^{\times}=K^{2} \backslash(\{(0, a) \mid a \in K\} \cup\{(a, 0) \mid a \in K\})=K^{2} \backslash\left(V\left(x_{1}\right) \cup V\left(x_{2}\right)\right)=$ $K^{2} \backslash\left(V\left(x_{1} \cdot x_{2}\right)\right)$ when we associate x_{1} with the first coordinate and x_{2} with the second. Using 3.2.9 we obtain $\mathcal{O}\left(U_{3}\right)=K\left[x_{1}, x_{2}\right]_{x_{1} \cdot x_{2}}$.

