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Exercise 1.
Let > be a monomial order on Monn. Prove that the following are equivalent:

1) > is global.

2) > is a well-ordering

3) xi > 1 ∀ i = 1, . . . , n

4) > refines ≥nat, i.e. xα >nat x
β ⇒ xα > xβ

Proof:

„1)⇒ 4)“: Let > be a global order and let xα, xβ be monomials with xα >nat x
β . It follows that αi ≥ βi for all i = 1, . . . , n.

Therefore αi−βi ≥ 1 and thus, since > is a global order, we have xα−β > 1. By multiplying with xβ we obtain
xα > xβ .

„4)⇒ 2)“: A well-ordering is a total order for which every non-empty subset has a least element in this ordering. Let
M ⊂ Monn be an arbitrary subset. We need to show that M has a minimal element with respect to >. By
Dickson’s Lemma there exists a finite subset B ⊂ M such that ∀xα ∈ M ∃xβ ∈ B with xα =nat x

β . By 4)
we know that for this finite subset B ⊂ M we even have ∀xα ∈ M ∃xβ ∈ B with xα > xβ . Therefore, we
can conclude that the minimal element of M is contained in B. Since a monomial order is always a total or-
der we can arrange the finitely many elements of B in ascending order and thus obtain the minimal element inM .

„2) ⇒ 3)“: Assume there exists an i0 with xi0 < 1. It follows that xji0 > xj+1
i0

. We consider the subset

M = {1, xi0 , x2i0 , x
3
i0 , . . .} ⊂ Monn.

By our assumption this subset does not contain a minimal element. Contradiction to > being a well-ordering.
Therefore, xi > 1 for all i = 1, . . . , n.

„3)⇒ 1)“: Let α = (α1, . . . , αn) ∈ Nn be arbitrary. By precondition: xi > 1 for all i = 1, . . . , n. It follows that xki > 1 for
all k ∈ N. We write xα = xα1

1 · . . . · xαnn . Since αi ∈ N for all i = 1, . . . , n we have xαii > 1 for all i = 1, . . . , n.
By repeatedly using transitivity we obtain xα = xα1

1 · . . . · xαnn > 1, so > is a global order.

Exercise 2. a) Prove that the set of monomials of K[X] has exactly two orders, one of which is global.

Proof: The set of monomials of K[X] is Mon1 = {1, X,X2, X3, . . .}. Since any monomial order is a total
order any two elements of Mon1 are comparable. Therefore, we need to decide for X and 1 between X > 1 and
X < 1. It remains to show that this decision uniquely determines the monomial order.
Case 1: Since the monomial order is compatible with the semigroup structure it follows that X > 1 implies
Xk+1 > Xk and more over by transitivity we have Xk > Xm with k > m. So the choice X > 1 determines
the order completely and this order is global.
Case 2: We have X < 1, so by the compatibility with the semigroup structure we have Xk+1 < Xk and,
moreover, by transitivity we have Xk < Xm with k > m. So the choice X < 1 determines the order completely
and this order is not global. �

b) Prove that the set of monomials of K[X,Y ] has uncountable many orders.
Hint: Consider weighted degree reverse lexicographic orders.
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Proof: The set of monomials of K[X,Y ] is Mon2.
We consider orders given by weighted degrees: Let α, α′ ∈ R be two real numbers. We show that for α 6= α′

the two orders induced by wα = (1, α) and wα′ = (1, α′) are different.
W.l.o.g. we choose α < α′. Choose p

q ∈ Q with α < p
q < α′. It follows that qα < p < qα′. We now compare

Xp with Y q in the two orders induced by wα = (1, α) and wα′ = (1, α′) : To compare Xp and Y q with respect
to wα = (1, α) we compute (p, 0) · (1, α) = p and (0, q) · (1, α) = α · q < p. It follows that Xp >wα Y

q.
For wα′ = (1, α′) we compute (p, 0) · (1, α′) = p and (0, q) · (1, α′) = α′ · q > p. It follows that Xp <wα′ Y

q.
So for two real numbers the induced orders by the weighted degrees are different, so every real number gives a
different order. Hence, there are uncountable many orders on Mon2. �

Exercise 3.
Let K be an algebraically closed field. Let A ⊂ Kn be an affine varieties and let f : A→ Km, a 7→ (f1(a), . . . , fm(a))
be a polynomial map, so f1, . . . , fm ∈ K[X1, . . . , Xn]. We write K[X1, ..., Xn] for the coordinate ring to Kn and
K[Y1, ..., Ym] for the coordinate ring to Km.
Prove: f(A) = V (〈I(A), Y1 − f1, . . . , Ym − fm〉K[X1,...,Xn,Y1,...,Ym] ∩K[Y ]).

Proof: Let Γf = {(a, f(a))|a ∈ A} ⊂ A × Km be the graph of f and let π2 : A × Km → Km be the projec-
tion to Km. By Prop. 1.6.8 we know that Γf is an affine variety and by Prop. 1.6.4 we know that π2 is a polynomial
map. Since f(A) = π2(Γf ), we know:

f(A) = π2(Γf )

Prop. 1.5.14 = V (I(Γf ) ∩K[Y ])

where I(Γf ) is an ideal in K[X1, . . . , Xn, Y1, . . . , Ym].
However, we do not need to compute I(Γf ). For the application of 1.5.14 it suffices to find an ideal I such that
Γf = V (I).
Let π1 : A×Km → A be the projection to A and let g : Km → Km be the identity with g = (g1, . . . , gm). Since f
is a polynomial map defined on A ⊂ Kn we can consider it as the restriction of a polynomial map Kn → Km. We
denote this map also by f .

Γf = (A×Km) ∩ {(a, b) ∈ Kn ×Km|g(b) = f(a)}
Prop. 1.6.9 = (A×Km) ∩ (Kn ×Km) ∩ V (f1 ◦ π1 − g1 ◦ π2, . . . , fm ◦ π1 − gm ◦ π2)

= (A×Km) ∩ V (f1 ◦ π1 − g1 ◦ π2, . . . , fm ◦ π1 − gm ◦ π2)

By the proof of 1.6.4 we know I(A×Km) = 〈I(A)〉K[X,Y ]. It follows that

Γf = V (I((A×Km) ∩ V (f1 ◦ π1 − g1 ◦ π2, . . . , fm ◦ π1 − gm ◦ π2)))

= V (〈I(A), f1 ◦ π1 − g1 ◦ π2, . . . , fm ◦ π1 − gm ◦ π2〉K[X,Y ])

Let I = 〈I(A), f1 ◦ π1 − g1 ◦ π2, . . . , fm ◦ π1 − gm ◦ π2〉K[X,Y ] with I(A) ⊂ K[X]. It follows that

f(A) = π2(Γf )

Prop. 1.5.14 = V (I ∩K[Y ])

= V (〈I(A), f1 ◦ π1 − g1 ◦ π2, . . . , fm ◦ π1 − gm ◦ π2〉K[X1,...,Xn,Y1,...,Ym] ∩K[Y ])

Here we have used that f1, . . . , fm ∈ K[X] so that fi ◦ π1 = fi and that the equations are coordinate-wise, so that
fi ◦ π1 − gi ◦ π2 = fi − Yi. �


