Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 5

Exercise 1.

Let $>$ be a monomial order on Mon_{n}. Prove that the following are equivalent:

1) $>$ is global.
2) $>$ is a well-ordering
3) $x_{i}>1 \forall i=1, \ldots, n$
4) $>$ refines $\geq_{\text {nat }}$, i.e. $\underline{x}^{\alpha}>{ }_{\text {nat }} \underline{x}^{\beta} \Rightarrow \underline{x}^{\alpha}>\underline{x}^{\beta}$

Proof:

$, 1) \Rightarrow 4)^{\prime \prime}:$ Let $>$ be a global order and let $\underline{x}^{\alpha}, \underline{x}^{\beta}$ be monomials with $\underline{x}^{\alpha}>{ }_{\text {nat }} \underline{x}^{\beta}$. It follows that $\alpha_{i} \geq \beta_{i}$ for all $i=1, \ldots, n$. Therefore $\alpha_{i}-\beta_{i} \geq 1$ and thus, since $>$ is a global order, we have $\underline{x}^{\alpha-\beta}>1$. By multiplying with \underline{x}^{β} we obtain $\underline{x}^{\alpha}>\underline{x}^{\beta}$.
$,, 4) \Rightarrow 2)^{\text {" }}$: A well-ordering is a total order for which every non-empty subset has a least element in this ordering. Let $M \subset \mathrm{Mon}_{n}$ be an arbitrary subset. We need to show that M has a minimal element with respect to $>$. By Dickson's Lemma there exists a finite subset $B \subset M$ such that $\forall \underline{x}^{\alpha} \in M \exists \underline{x}^{\beta} \in B$ with $\underline{x}^{\alpha} \geqq$ nat \underline{x}^{β}. By 4) we know that for this finite subset $B \subset M$ we even have $\forall \underline{x}^{\alpha} \in M \exists \underline{x}^{\beta} \in \bar{B}$ with $\underline{x}^{\alpha}>\underline{x}^{\beta}$. Therefore, we can conclude that the minimal element of M is contained in B. Since a monomial order is always a total order we can arrange the finitely many elements of B in ascending order and thus obtain the minimal element in M.
$\left.\left.{ }^{, 2} 2\right) \Rightarrow 3\right)^{\prime \prime}$: Assume there exists an i_{0} with $x_{i_{0}}<1$. It follows that $x_{i_{0}}^{j}>x_{i_{0}}^{j+1}$. We consider the subset

$$
M=\left\{1, x_{i_{0}}, x_{i_{0}}^{2}, x_{i_{0}}^{3}, \ldots\right\} \subset \operatorname{Mon}_{n}
$$

By our assumption this subset does not contain a minimal element. Contradiction to $>$ being a well-ordering. Therefore, $x_{i}>1$ for all $i=1, \ldots, n$.
,,3) $\Rightarrow 1)^{\text {" }}$: Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ be arbitrary. By precondition: $x_{i}>1$ for all $i=1, \ldots, n$. It follows that $x_{i}^{k}>1$ for all $k \in \mathbb{N}$. We write $\underline{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}$. Since $\alpha_{i} \in \mathbb{N}$ for all $i=1, \ldots, n$ we have $x_{i}^{\alpha_{i}}>1$ for all $i=1, \ldots, n$. By repeatedly using transitivity we obtain $\underline{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}>1$, so $>$ is a global order.

Exercise 2. a) Prove that the set of monomials of $K[X]$ has exactly two orders, one of which is global.
Proof: The set of monomials of $K[X]$ is $\operatorname{Mon}_{1}=\left\{1, X, X^{2}, X^{3}, \ldots\right\}$. Since any monomial order is a total order any two elements of Mon_{1} are comparable. Therefore, we need to decide for X and 1 between $X>1$ and $X<1$. It remains to show that this decision uniquely determines the monomial order.
Case 1: Since the monomial order is compatible with the semigroup structure it follows that $X>1$ implies $X^{k+1}>X^{k}$ and more over by transitivity we have $X^{k}>X^{m}$ with $k>m$. So the choice $X>1$ determines the order completely and this order is global.
Case 2: We have $X<1$, so by the compatibility with the semigroup structure we have $X^{k+1}<X^{k}$ and, moreover, by transitivity we have $X^{k}<X^{m}$ with $k>m$. So the choice $X<1$ determines the order completely and this order is not global.
b) Prove that the set of monomials of $K[X, Y]$ has uncountable many orders.

Hint: Consider weighted degree reverse lexicographic orders.

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 5

Proof: The set of monomials of $K[X, Y]$ is Mon_{2}.
We consider orders given by weighted degrees: Let $\alpha, \alpha^{\prime} \in \mathbb{R}$ be two real numbers. We show that for $\alpha \neq \alpha^{\prime}$ the two orders induced by $w_{\alpha}=(1, \alpha)$ and $w_{\alpha^{\prime}}=\left(1, \alpha^{\prime}\right)$ are different.
W.l.o.g. we choose $\alpha<\alpha^{\prime}$. Choose $\frac{p}{q} \in \mathbb{Q}$ with $\alpha<\frac{p}{q}<\alpha^{\prime}$. It follows that $q \alpha<p<q \alpha^{\prime}$. We now compare X^{p} with Y^{q} in the two orders induced by $w_{\alpha}=(1, \alpha)$ and $w_{\alpha^{\prime}}=\left(1, \alpha^{\prime}\right)$: To compare X^{p} and Y^{q} with respect to $w_{\alpha}=(1, \alpha)$ we compute $(p, 0) \cdot(1, \alpha)=p$ and $(0, q) \cdot(1, \alpha)=\alpha \cdot q<p$. It follows that $X^{p}>_{w_{\alpha}} Y^{q}$.
For $w_{\alpha^{\prime}}=\left(1, \alpha^{\prime}\right)$ we compute $(p, 0) \cdot\left(1, \alpha^{\prime}\right)=p$ and $(0, q) \cdot\left(1, \alpha^{\prime}\right)=\alpha^{\prime} \cdot q>p$. It follows that $X^{p}<_{w_{\alpha^{\prime}}} Y^{q}$.
So for two real numbers the induced orders by the weighted degrees are different, so every real number gives a different order. Hence, there are uncountable many orders on Mon_{2}.

Exercise 3.

Let K be an algebraically closed field. Let $A \subset K^{n}$ be an affine varieties and let $f: A \rightarrow K^{m}, a \mapsto\left(f_{1}(a), \ldots, f_{m}(a)\right)$ be a polynomial map, so $f_{1}, \ldots, f_{m} \in K\left[X_{1}, \ldots, X_{n}\right]$. We write $K\left[X_{1}, \ldots, X_{n}\right]$ for the coordinate ring to K^{n} and $K\left[Y_{1}, \ldots, Y_{m}\right]$ for the coordinate ring to K^{m}.
Prove: $f(A)=V\left(\left\langle I(A), Y_{1}-f_{1}, \ldots, Y_{m}-f_{m}\right\rangle_{K\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right]} \cap K[\underline{Y}]\right)$.
Proof: Let $\Gamma_{f}=\{(a, f(a)) \mid a \in A\} \subset A \times K^{m}$ be the graph of f and let $\pi_{2}: A \times K^{m} \rightarrow K^{m}$ be the projection to K^{m}. By Prop. 1.6.8 we know that Γ_{f} is an affine variety and by Prop. 1.6.4 we know that π_{2} is a polynomial map. Since $f(A)=\pi_{2}\left(\Gamma_{f}\right)$, we know:

$$
\begin{aligned}
\overline{f(A)} & =\overline{\pi_{2}\left(\Gamma_{f}\right)} \\
\text { Prop. 1.5.14 } & =V\left(I\left(\Gamma_{f}\right) \cap K[\underline{Y}]\right)
\end{aligned}
$$

where $I\left(\Gamma_{f}\right)$ is an ideal in $K\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right]$.
However, we do not need to compute $I\left(\Gamma_{f}\right)$. For the application of 1.5 .14 it suffices to find an ideal I such that $\Gamma_{f}=V(I)$.
Let $\pi_{1}: A \times K^{m} \rightarrow A$ be the projection to A and let $g: K^{m} \rightarrow K^{m}$ be the identity with $g=\left(g_{1}, \ldots, g_{m}\right)$. Since f is a polynomial map defined on $A \subset K^{n}$ we can consider it as the restriction of a polynomial map $K^{n} \rightarrow K^{m}$. We denote this map also by f.

$$
\begin{aligned}
\Gamma_{f} & =\left(A \times K^{m}\right) \cap\left\{(a, b) \in K^{n} \times K^{m} \mid g(b)=f(a)\right\} \\
\text { Prop. 1.6.9 } & =\left(A \times K^{m}\right) \cap\left(K^{n} \times K^{m}\right) \cap V\left(f_{1} \circ \pi_{1}-g_{1} \circ \pi_{2}, \ldots, f_{m} \circ \pi_{1}-g_{m} \circ \pi_{2}\right) \\
& =\left(A \times K^{m}\right) \cap V\left(f_{1} \circ \pi_{1}-g_{1} \circ \pi_{2}, \ldots, f_{m} \circ \pi_{1}-g_{m} \circ \pi_{2}\right)
\end{aligned}
$$

By the proof of 1.6 .4 we know $I\left(A \times K^{m}\right)=\langle I(A)\rangle_{K[X, Y]}$. It follows that

$$
\begin{aligned}
\Gamma_{f} & =V\left(I\left(\left(A \times K^{m}\right) \cap V\left(f_{1} \circ \pi_{1}-g_{1} \circ \pi_{2}, \ldots, f_{m} \circ \pi_{1}-g_{m} \circ \pi_{2}\right)\right)\right) \\
& =V\left(\left\langle I(A), f_{1} \circ \pi_{1}-g_{1} \circ \pi_{2}, \ldots, f_{m} \circ \pi_{1}-g_{m} \circ \pi_{2}\right\rangle_{K[\underline{X}, \underline{Y}]}\right)
\end{aligned}
$$

Let $I=\left\langle I(A), f_{1} \circ \pi_{1}-g_{1} \circ \pi_{2}, \ldots, f_{m} \circ \pi_{1}-g_{m} \circ \pi_{2}\right\rangle_{K[\underline{X}, \underline{Y}]}$ with $I(A) \subset K[\underline{X}]$. It follows that

$$
\begin{aligned}
\overline{f(A)} & =\overline{\pi_{2}\left(\Gamma_{f}\right)} \\
\text { Prop. 1.5.14 } & =V(I \cap K[\underline{Y}]) \\
& =V\left(\left\langle I(A), f_{1} \circ \pi_{1}-g_{1} \circ \pi_{2}, \ldots, f_{m} \circ \pi_{1}-g_{m} \circ \pi_{2}\right\rangle_{K\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right]} \cap K[\underline{Y}]\right)
\end{aligned}
$$

Here we have used that $f_{1}, \ldots, f_{m} \in K[\underline{X}]$ so that $f_{i} \circ \pi_{1}=f_{i}$ and that the equations are coordinate-wise, so that $f_{i} \circ \pi_{1}-g_{i} \circ \pi_{2}=f_{i}-Y_{i}$.

