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Exercise 1.
Let > be a monomial order on Mon,,. Prove that the following are equivalent:

1) > is global.
2) > is a well-ordering
3) ;i >1Vi=1,...,n
4) > refines >nat, i.e. 2% >nap 2P = 2% > 2P
Proof:
,1)= 4)“ Let > be a global order and let %, z” be monomials with 2 >, 2. It follows that a; > B; foralli =1,... n.

A= 2)"

22) = 3)"

23)= 1)"

Therefore a; — 3; > 1 and thus, since > is a global order, we have 2% > 1. By multiplying with z° we obtain
z% > 2P,

A well-ordering is a total order for which every non-empty subset has a least element in this ordering. Let
M C Mon,, be an arbitrary subset. We need to show that M has a minimal element with respect to >. By
Dickson's Lemma there exists a finite subset B C M such that Vz® € M 3z2° € B with 2% 2,.; 2°. By 4)
we know that for this finite subset B C M we even have Vz® € M 3z° € B with 2® > 2f. Therefore, we
can conclude that the minimal element of M is contained in B. Since a monomial order is always a total or-
der we can arrange the finitely many elements of B in ascending order and thus obtain the minimal element in M.

j+1

i - We consider the subset

i

Assume there exists an ig with z;, < 1. It follows that ;ij >

M = {1,z;,22 23 ,...} C Mon,,.

190 Vig?

By our assumption this subset does not contain a minimal element. Contradiction to > being a well-ordering.
Therefore, x; > 1 foralli=1,...,n.

Let & = (ay,...,a,) € N" be arbitrary. By precondition: z; > 1 for all i = 1,...,n. It follows that ¥ > 1 for
all k € N. We write 2% = 27" -...-2%". Since a; € Nforalli =1,...,n we have 2" > 1 forall i =1,...,n.
By repeatedly using transitivity we obtain & = z7* - ... 2% > 1, so > is a global order.

Exercise 2. a) Prove that the set of monomials of K[X] has exactly two orders, one of which is global.

Proof: The set of monomials of K[X] is Mon; = {1, X, X2 X3 ...}. Since any monomial order is a total
order any two elements of Mon; are comparable. Therefore, we need to decide for X and 1 between X > 1 and
X < 1. It remains to show that this decision uniquely determines the monomial order.

Case 1: Since the monomial order is compatible with the semigroup structure it follows that X > 1 implies
X*+1 > X* and more over by transitivity we have X* > X™ with k > m. So the choice X > 1 determines
the order completely and this order is global.

Case 2: We have X < 1, so by the compatibility with the semigroup structure we have X*+1 < X% and,
moreover, by transitivity we have X* < X™ with k > m. So the choice X < 1 determines the order completely
and this order is not global. O

Prove that the set of monomials of K[X,Y] has uncountable many orders.
Hint: Consider weighted degree reverse lexicographic orders.
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Proof: The set of monomials of K[X,Y] is Mons.

We consider orders given by weighted degrees: Let o, ' € R be two real numbers. We show that for « # o’
the two orders induced by w, = (1, @) and w, = (1,¢) are different.

W.l.o.g. we choose o < . Choose % € Q with a < % < . It follows that gqa < p < qa’. We now compare
XP with Y7 in the two orders induced by w, = (1,a) and wy = (1,a’) : To compare XP and Y7 with respect
to we = (1, ) we compute (p,0) - (1,a) =p and (0,q) - (1,) = - g < p. It follows that X? >, Y.

For we = (1,a’) we compute (p,0) - (1,a') = p and (0,q) - (1,&') = &' - ¢ > p. It follows that X? <,, , Y.
So for two real numbers the induced orders by the weighted degrees are different, so every real number gives a
different order. Hence, there are uncountable many orders on Mons. O

Exercise 3.

Let K be an algebraically closed field. Let A C K™ be an affine varieties and let f : A — K™, a— (fi(a),..., fm(a))
be a polynomial map, so fi,..., fm € K[X1,...,X,]. We write K[X}, ..., X,,] for the coordinate ring to K™ and
K[Y1,...,Y,,] for the coordinate ring to K™.

PFOVGZ f(A) = V(<I(A)7 Yl — fl, . ,Ym — fm>K[Xl-,--~7X71,7Y17~--7Ym,] M K[X])

Proof: Let I'y = {(a, f(a))la € A} C A x K™ be the graph of f and let m3 : A x K™ — K™ be the projec-
tion to K™. By Prop. 1.6.8 we know that 'y is an affine variety and by Prop. 1.6.4 we know that 75 is a polynomial
map. Since f(A) = ma(T'f), we know:

f(A) =ma(Ty)
prop. 1820 = V (I(T'y) N K[Y])
where I(T'f) is an ideal in K[X1q,...,X,,Y1,..., Y]
However, we do not need to compute I(I';). For the application of 1.5.14 it suffices to find an ideal I such that
Iy =V().
Let m : A x K™ — A be the projection to A and let g : K™ — K™ be the identity with ¢ = (¢1,...,9m). Since f

is a polynomial map defined on A C K™ we can consider it as the restriction of a polynomial map K™ — K™. We
denote this map also by f.

Iy =(AxEK"™)N{(a,b) € K" x K™|g(b) = f(a)}
Prop. 1.6.9 — (A X Km)ﬁ(K” X Km)ﬁV(f1 om — g1 O7T27...,fm071'1 —gmo7T2)
=(AxK™")NV(fiom —g10ma, ..., [ ©T1 — gm © T2)

By the proof of 1.6.4 we know I(A x K™) = (I(A))k[x,y]- It follows that

Ly =VI((Ax K™")NV(fiom —gioma,..., fm 071 — gm 0 72)))
:V(<I(A)7f1 oM —g10M,..., fm O™ —9m0W2>K[LX])

Let I = (I(A), fiom —g10m2,..., fm ©T1 — gm © T2) g[x,y] With I(A4) C K[X]. It follows that

f(A) =m(Ty)
Prop. 1.5.14 — V(IQK[Z])
=V({(I(A), from — g1 0T, ..., fm ©T1 — gm © T2) K[x,

Here we have used that f1,..., f,, € K[X] so that f; o my = f; and that the equations are coordinate-wise, so that
fiom —giom = f; = Y. O




