Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 5

Exercise 1.

Let > be a monomial order on Mon_n. Prove that the following are equivalent:

1) > is global.

- 2) > is a well-ordering
- 3) $x_i > 1 \ \forall i = 1, \dots, n$
- 4) > refines \geq_{nat} , i.e. $\underline{x}^{\alpha} >_{nat} \underline{x}^{\beta} \Rightarrow \underline{x}^{\alpha} > \underline{x}^{\beta}$

Proof:

- $\begin{array}{l} \text{(1)} \Rightarrow \text{(1)} \Rightarrow \text{(2)} \\ \text{(1)} \Rightarrow \text{(2)} \\ \text{(1)} \Rightarrow \text{(2)} \\ \text{(2)} \\ \text{(1)} \Rightarrow \text{(2)} \\ \text{(2$
- ",4) \Rightarrow 2)": A well-ordering is a total order for which every non-empty subset has a least element in this ordering. Let $M \subset Mon_n$ be an arbitrary subset. We need to show that M has a minimal element with respect to >. By Dickson's Lemma there exists a finite subset $B \subset M$ such that $\forall \underline{x}^{\alpha} \in M \exists \underline{x}^{\beta} \in B$ with $\underline{x}^{\alpha} \geq_{nat} \underline{x}^{\beta}$. By 4) we know that for this finite subset $B \subset M$ we even have $\forall \underline{x}^{\alpha} \in M \exists \underline{x}^{\beta} \in B$ with $\underline{x}^{\alpha} > \underline{x}^{\beta}$. Therefore, we can conclude that the minimal element of M is contained in B. Since a monomial order is always a total order we can arrange the finitely many elements of B in ascending order and thus obtain the minimal element in M.
- ,2) \Rightarrow 3)": Assume there exists an i_0 with $x_{i_0} < 1$. It follows that $x_{i_0}^j > x_{i_0}^{j+1}$. We consider the subset

$$M = \{1, x_{i_0}, x_{i_0}^2, x_{i_0}^3, \ldots\} \subset \mathsf{Mon}_n.$$

By our assumption this subset does not contain a minimal element. Contradiction to > being a well-ordering. Therefore, $x_i > 1$ for all i = 1, ..., n.

",3) \Rightarrow 1)": Let $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ be arbitrary. By precondition: $x_i > 1$ for all $i = 1, \dots, n$. It follows that $x_i^k > 1$ for all $k \in \mathbb{N}$. We write $\underline{x}^{\alpha} = x_1^{\alpha_1} \cdot \dots \cdot x_n^{\alpha_n}$. Since $\alpha_i \in \mathbb{N}$ for all $i = 1, \dots, n$ we have $x_i^{\alpha_i} > 1$ for all $i = 1, \dots, n$. By repeatedly using transitivity we obtain $\underline{x}^{\alpha} = x_1^{\alpha_1} \cdot \dots \cdot x_n^{\alpha_n} > 1$, so > is a global order.

Exercise 2. a) Prove that the set of monomials of K[X] has exactly two orders, one of which is global.

Proof: The set of monomials of K[X] is $Mon_1 = \{1, X, X^2, X^3, \ldots\}$. Since any monomial order is a total order any two elements of Mon_1 are comparable. Therefore, we need to decide for X and 1 between X > 1 and X < 1. It remains to show that this decision uniquely determines the monomial order.

Case 1: Since the monomial order is compatible with the semigroup structure it follows that X > 1 implies $X^{k+1} > X^k$ and more over by transitivity we have $X^k > X^m$ with k > m. So the choice X > 1 determines the order completely and this order is global.

Case 2: We have X < 1, so by the compatibility with the semigroup structure we have $X^{k+1} < X^k$ and, moreover, by transitivity we have $X^k < X^m$ with k > m. So the choice X < 1 determines the order completely and this order is not global.

b) Prove that the set of monomials of K[X, Y] has uncountable many orders. *Hint:* Consider weighted degree reverse lexicographic orders.

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 5

Proof: The set of monomials of K[X, Y] is Mon₂.

We consider orders given by weighted degrees: Let $\alpha, \alpha' \in \mathbb{R}$ be two real numbers. We show that for $\alpha \neq \alpha'$ the two orders induced by $w_{\alpha} = (1, \alpha)$ and $w_{\alpha'} = (1, \alpha')$ are different.

W.l.o.g. we choose $\alpha < \alpha'$. Choose $\frac{p}{q} \in \mathbb{Q}$ with $\alpha < \frac{p}{q} < \alpha'$. It follows that $q\alpha . We now compare <math>X^p$ with Y^q in the two orders induced by $w_{\alpha} = (1, \alpha)$ and $w_{\alpha'} = (1, \alpha')$: To compare X^p and Y^q with respect to $w_{\alpha} = (1, \alpha)$ we compute $(p, 0) \cdot (1, \alpha) = p$ and $(0, q) \cdot (1, \alpha) = \alpha \cdot q < p$. It follows that $X^p >_{w_{\alpha}} Y^q$. For $w_{\alpha'} = (1, \alpha')$ we compute $(p, 0) \cdot (1, \alpha') = p$ and $(0, q) \cdot (1, \alpha') = \alpha' \cdot q > p$. It follows that $X^p <_{w_{\alpha'}} Y^q$.

So for two real numbers the induced orders by the weighted degrees are different, so every real number gives a different order. Hence, there are uncountable many orders on Mon_2 .

Exercise 3.

Let K be an algebraically closed field. Let $A \subset K^n$ be an affine varieties and let $f : A \to K^m$, $a \mapsto (f_1(a), \ldots, f_m(a))$ be a polynomial map, so $f_1, \ldots, f_m \in K[X_1, \ldots, X_n]$. We write $K[X_1, \ldots, X_n]$ for the coordinate ring to K^n and $K[Y_1, \ldots, Y_m]$ for the coordinate ring to K^m .

Prove: $f(A) = V(\langle I(A), Y_1 - f_1, ..., Y_m - f_m \rangle_{K[X_1,...,X_n,Y_1,...,Y_m]} \cap K[\underline{Y}]).$

Proof: Let $\Gamma_f = \{(a, f(a)) | a \in A\} \subset A \times K^m$ be the graph of f and let $\pi_2 : A \times K^m \to K^m$ be the projection to K^m . By Prop. 1.6.8 we know that Γ_f is an affine variety and by Prop. 1.6.4 we know that π_2 is a polynomial map. Since $f(A) = \pi_2(\Gamma_f)$, we know:

$$\overline{f(A)} = \overline{\pi_2(\Gamma_f)}$$
Prop. 1.5.14 = $V(I(\Gamma_f) \cap K[\underline{Y}])$

where $I(\Gamma_f)$ is an ideal in $K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]$.

However, we do not need to compute $I(\Gamma_f)$. For the application of 1.5.14 it suffices to find an ideal I such that $\Gamma_f = V(I)$.

Let $\pi_1: A \times K^m \to A$ be the projection to A and let $g: K^m \to K^m$ be the identity with $g = (g_1, \ldots, g_m)$. Since f is a polynomial map defined on $A \subset K^n$ we can consider it as the restriction of a polynomial map $K^n \to K^m$. We denote this map also by f.

$$\begin{split} \Gamma_f &= (A \times K^m) \cap \{(a, b) \in K^n \times K^m | g(b) = f(a)\} \\ \mathbf{Prop. 1.6.9} &= (A \times K^m) \cap (K^n \times K^m) \cap V(f_1 \circ \pi_1 - g_1 \circ \pi_2, \dots, f_m \circ \pi_1 - g_m \circ \pi_2) \\ &= (A \times K^m) \cap V(f_1 \circ \pi_1 - g_1 \circ \pi_2, \dots, f_m \circ \pi_1 - g_m \circ \pi_2) \end{split}$$

By the proof of 1.6.4 we know $I(A \times K^m) = \langle I(A) \rangle_{K[X,Y]}$. It follows that

$$\Gamma_f = V(I((A \times K^m) \cap V(f_1 \circ \pi_1 - g_1 \circ \pi_2, \dots, f_m \circ \pi_1 - g_m \circ \pi_2))) = V(\langle I(A), f_1 \circ \pi_1 - g_1 \circ \pi_2, \dots, f_m \circ \pi_1 - g_m \circ \pi_2 \rangle_{K[X,Y]})$$

Let $I = \langle I(A), f_1 \circ \pi_1 - g_1 \circ \pi_2, \dots, f_m \circ \pi_1 - g_m \circ \pi_2 \rangle_{K[\underline{X},\underline{Y}]}$ with $I(A) \subset K[\underline{X}]$. It follows that

$$\begin{split} \overline{f(A)} &= \overline{\pi_2(\Gamma_f)} \\ \mathbf{Prop. 1.5.14} &= V(I \cap K[\underline{Y}]) \\ &= V(\langle I(A), f_1 \circ \pi_1 - g_1 \circ \pi_2, \dots, f_m \circ \pi_1 - g_m \circ \pi_2 \rangle_{K[X_1, \dots, X_n, Y_1, \dots, Y_m]} \cap K[\underline{Y}]) \end{split}$$

Here we have used that $f_1, \ldots, f_m \in K[\underline{X}]$ so that $f_i \circ \pi_1 = f_i$ and that the equations are coordinate-wise, so that $f_i \circ \pi_1 - g_i \circ \pi_2 = f_i - Y_i$.