Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 6

Exercise 1 (Product criterion).

Let K be a field, $>$ be a monomial order, $f, g \in K[\underline{x}], \operatorname{gcd}(\operatorname{LM}(f), \operatorname{LM}(g))=1$.
Show that there is a polynomials division with remainder of $\operatorname{spoly}(f, g)$ by (f, g) with remainder 0 .
Hint: Show first that $\operatorname{spoly}(f, g)=a_{0} f+b_{0} g$ for $a_{0}=-\operatorname{tail}(g)$ and $b_{0}=\operatorname{tail}(f)$ and then define recursively $a_{i}=\operatorname{tail}\left(a_{i-1}\right)$ and $b_{i}=\operatorname{tail}\left(b_{i-1}\right)$. Consider the maximal value N such that $u \cdot \operatorname{spoly}(f, g)=a_{N} f+b_{N} g$ for some element $u \in K[\underline{x}]^{*}$ and distinguish the two cases that $L T\left(a_{N} f\right)+L T\left(b_{N} g\right)$ vanishes respectively does not vanish.

Proof: We want to show: $\exists u \in K[\underline{x}]^{*}, q_{1}, q_{2} \in K[\underline{x}]$ such that u spoly $(f, g)=q_{1} f+q_{2} g+0$ satisfies ID1 $\left(\mathrm{LM}(\operatorname{spoly}(f, g)) \geq \mathrm{LM}\left(q_{1} f\right), \mathrm{LM}\left(q_{2} g\right)\right)$ and ID2 (always satisfied for $\left.r=0\right)$.
We show the statement from the hint first:

$$
\begin{aligned}
\operatorname{spoly}(f, g) & =\frac{\mathrm{LT}(g)}{g c d(\mathrm{LM}(f), \mathrm{LM}(g))} \cdot f-\frac{\mathrm{LT}(f)}{g c d(\mathrm{LM}(f), \mathrm{LM}(g)} \cdot g \\
& =\mathrm{LT}(g) \cdot f-\mathbf{\operatorname { L T }}(f) \cdot g
\end{aligned}
$$

because $\operatorname{gcd}(\mathrm{LM}(f), \operatorname{LM}(g))=1$. It is $f=\operatorname{LT}(f)+\operatorname{tail}(f), g=\mathbf{L T}(g)+$ tail (g) so we can set

$$
\begin{align*}
\operatorname{spoly}(f, g) & =\mathrm{LT}(g) \cdot f-\mathbf{L T}(f) \cdot g \\
& =(g-\operatorname{tail}(g)) \cdot f-(f-\operatorname{tail}(f)) \cdot g \\
& =g f-f g+(-\operatorname{tail}(g)) f+(\operatorname{tail}(f)) g \\
& =(-\operatorname{tail}(g)) f+(\operatorname{tail}(f)) g \tag{1}
\end{align*}
$$

Set $a_{0}=-\operatorname{tail}(g), b_{0}=\operatorname{tail}(f)$. Now we define recursively $a_{i}=\operatorname{tail}\left(a_{i-1}\right), b_{i}=\operatorname{tail}\left(b_{i-1}\right)$.
Set $N:=\max \{$ no. of terms occuring in f, no. of terms occuring in $g\}$, then $a_{N}=b_{N}=0$.
Choose $\nu \in\{0, \ldots, N\}$ maximal such that $\exists u \in K[\underline{x}]^{*}: u \cdot \operatorname{spoly}(f, g)=a_{\nu} f+b_{\nu} g$. Such a ν exists because of 1 . It remains to show that this satisfies ID1. We distinguish the cases that $\mathbf{L T}\left(a_{\nu} f\right)+\mathbf{L T}\left(b_{\nu} g\right)$ vanishes respectively does not vanish.

1. case: $\mathbf{L T}\left(a_{\nu} f\right)+\mathbf{L T}\left(b_{\nu} g\right) \neq 0$.
$\Rightarrow \mathrm{LM}(u \cdot \operatorname{spoly}(f, g))=\max \left\{\mathrm{LM}\left(a_{\nu} f\right), \mathrm{LM}\left(b_{\nu} g\right)\right\}$.
$\Rightarrow u \cdot \operatorname{spoly}(f, g)=a_{\nu} f+b_{\nu} g$ satisfies ID1.
2.case: $\operatorname{LT}\left(a_{\nu} f\right)+\operatorname{LT}\left(b_{\nu} g\right)=0$.

Since $\mathrm{LC}(f), \mathrm{LC}(g), \mathrm{LC}\left(a_{\nu}\right), \mathrm{LC}\left(b_{\nu}\right) \neq 0$ the above applies that

$$
\operatorname{LT}\left(a_{\nu}\right) \cdot \mathbf{\operatorname { L T }}(f)=-\mathbf{L T}\left(b_{\nu}\right) \cdot \mathbf{L T}(g)
$$

Since $\operatorname{gcd}(\operatorname{LM}(f), \operatorname{LM}(g))=1$ and $\operatorname{LT}(f)$ divides the left hand side it also has to divide the right hand side, so there exists a term T such that $\mathbf{L T}\left(a_{\nu}\right)=T \cdot \mathbf{L T}(g)$ and $\mathbf{L T}\left(b_{\nu}\right)=-T \cdot \mathbf{L T}(f)$.

$$
\begin{aligned}
\Rightarrow(u-T) \cdot \operatorname{spoly}(f, g) & =a_{\nu} f+b_{\nu} g-T(\mathbf{L T}(g) \cdot f-\mathbf{L T}(f) \cdot g) \\
& \left.=a_{\nu} f+b_{\nu} g-\mathbf{L T}\left(a_{\nu}\right) \cdot f-\mathbf{L T}\left(b_{\nu}\right) \cdot g\right) \\
& =a_{\nu+1} f+b_{\nu+1} g
\end{aligned}
$$

By the maximality of ν it follows that either $\nu=N$ or $u-T \notin K[\underline{x}]^{*}$.

- If $\nu=N$ it follows that: $\exists u \in K[\underline{x}]^{*}: u \cdot \operatorname{spoly}(f, g)=0 \cdot f+0 \cdot g+0$ $\Rightarrow \operatorname{spoly}(f, g)=0$ itself and this satisfies ID1.
- If $u-T \notin K[\underline{x}]^{*}$: Since $u \in K[\underline{x}]^{*}$ we have $T \neq 0$.
$\Rightarrow \operatorname{LT}\left(a_{\nu}\right)=T \cdot \operatorname{LT}(g)=\operatorname{LT}(T \cdot g)$ Contradiction, since $a_{\nu}=\operatorname{tail}(\operatorname{tail}(\ldots(\operatorname{tail}(g))))$.

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 6

Exercise 2.

The degree lexicographical ordering $>_{D p}$ on Mon ${ }_{n}$ is defined by

$$
\underline{x}^{\alpha}>_{D p} \underline{x}^{\beta}: \Leftrightarrow|\alpha|>|\beta| \text { or }\left(|\alpha|=|\beta| \text { and } \exists k: \alpha_{1}=\beta_{1}, \ldots, \alpha_{k-1}=\beta_{k-1}, \alpha_{k}>\beta_{k}\right) .
$$

A polynomial $f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \underline{x}^{\alpha} \in K\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous if for all α with $a_{\alpha} \neq 0$ the absolute value $|\alpha|$ is constant.
Show that a monomial ordering $>$ on Mon $_{n}$ equals $>_{D p}$ if and only if $>$ is a degree ordering and for any homogeneous $f \in K[\underline{x}]$ with $\mathrm{LM}(f) \in K\left[x_{k}, \ldots, x_{n}\right]$ we have $f \in K\left[x_{k}, \ldots x_{n}\right], k=1, \ldots, n$.

Proof: ,, \Rightarrow ": Dp is a degree ordering by definition. Let $f \in K[\underline{x}]$ a homogeneous polynomial with $\mathrm{LM}(f) \in$ $K\left[x_{k}, \ldots, x_{n}\right]$ for some k.
Assume there exists a monomial \underline{x}^{γ} in f such that $\underline{x}^{\gamma} \notin K\left[x_{k}, \ldots, x_{n}\right]$. Write $\underline{x}^{\alpha}=\mathrm{LM}(f)$. Since f is homogeneous $\Rightarrow|\alpha|=|\gamma|$. But $\exists k^{\prime}<k: \gamma_{k^{\prime}}>(\alpha)_{k^{\prime}}=0$. This implies $\underline{x}^{\gamma}>\underline{x}^{\alpha}=\mathrm{LM}(f)$ Contradiction!
$, \ldots ":$ Suppose for the monomial ordering $>$ satisfies $\underline{x}^{\alpha}>\underline{x}^{\beta}$ and $\underline{x}^{\alpha}<_{D p} \underline{x}^{\beta}$ for $\underline{x}^{\alpha} \neq \underline{x}^{\beta}$.
Since both $>$ and $>_{D p}$ are degree orderings, this implies that $|\alpha|=|\beta|$. Therefore, there exists k such that $\alpha_{1}=\beta_{1}, \ldots, \alpha_{k-1}=\beta_{k-1}, \alpha_{k}<\beta_{k}$. We can conclude that $k \neq n$ since for $k=n$ we would know that $|\alpha|=|\beta|$ and $\alpha_{1}=\beta_{1}, \ldots, \alpha_{n-1}=\beta_{n-1}$ which would also imply $\alpha_{n}=\beta_{n}$ and thus $\underline{x}^{\alpha}=\underline{x}^{\beta}$, contradiction.
Define

$$
\begin{aligned}
\tilde{\alpha} & :=\left(0, \ldots, 0, \alpha_{k+1}, \ldots, \alpha_{n}\right) \\
\tilde{\beta} & :=\left(0, \ldots, 0, \beta_{k}-\alpha_{k}, \beta_{k+1}, \ldots, \beta_{n}\right) \\
\gamma & :=\left(\alpha_{1}, \ldots, \alpha_{k}, 0, \ldots, 0\right)
\end{aligned}
$$

Then we know:

$$
\underline{x}^{\tilde{\alpha}} \cdot \underline{x}^{\gamma}=\underline{x}^{\alpha}>_{D p} \underline{x}^{\beta}=\underline{x}^{\tilde{\beta}} \cdot \underline{x}^{\gamma} \Rightarrow \underline{x}^{\tilde{\alpha}}>_{D p} \underline{x}^{\tilde{\beta}}
$$

Define now $f=\underline{x}^{\tilde{\alpha}}+\underline{x}^{\tilde{\beta}}$. Then f is homogeneous, since $|\tilde{\alpha}|=|\alpha|-|\gamma|=|\beta|-|\gamma|=|\tilde{\beta}|$. And f satisfies $\mathrm{LM}^{>}(f)=\underline{x}^{\tilde{\alpha}} \in K\left[x_{k+1}, \ldots, x_{n}\right]$ but $f \notin K\left[x_{k+1}, \ldots, x_{n}\right]$. This contradicts the prerequisite.

Exercise 3.

Apply IDBuchberger to the following triple $(g, G,>)$:

$$
g=x^{4}+y^{4}+z^{4}+x y z, G=\{\partial g / \partial x, \partial g / \partial y, \partial g / \partial z\},>_{d p}
$$

Solution: Set $r_{0}:=g, f_{1}:=\partial g / \partial x=4 x^{3}+y z, f_{2}:=\partial g / \partial y=4 y^{3}+x z, f_{3}:=\partial g / \partial z=4 z^{3}+x y$.

1. Step: $\operatorname{LM}\left(f_{1}\right)=x^{3} \mid x^{4}=\operatorname{LM}\left(r_{0}\right)$.

Set $q_{1}:=\frac{\mathbf{L T}\left(r_{0}\right)}{\operatorname{LT}\left(f_{1}\right)}=\frac{1}{4} x$ and

Introduction to Commutative Algebra and Algebraic Geometry Solution to Exercise Sheet 6

$$
\begin{aligned}
r_{1} & =\frac{\operatorname{spoly}\left(r_{0}, f_{1}\right)}{\mathrm{LC}\left(f_{1}\right)}=\frac{1}{\mathrm{LC}\left(f_{1}\right)} \cdot\left(\mathrm{LC}\left(f_{1}\right) \cdot \frac{l c m\left(\mathrm{LM}\left(r_{0}\right), \mathrm{LM}\left(f_{1}\right)\right)}{\mathrm{LM}\left(r_{0}\right)} \cdot r_{0}-\mathrm{LC}\left(r_{0}\right) \cdot \frac{l c m\left(\mathrm{LM}\left(r_{0}\right), \mathrm{LM}\left(f_{1}\right)\right)}{\mathrm{LM}\left(f_{1}\right)} \cdot f_{1}\right) \\
& =\frac{1}{\mathrm{LC}\left(f_{1}\right)} \cdot\left(\frac{\mathrm{LT}\left(f_{1}\right)}{g c d\left(\mathrm{LM}\left(r_{0}\right), \mathrm{LM}\left(f_{1}\right)\right)} \cdot r_{0}-\frac{\mathrm{LT}\left(r_{0}\right)}{g c d\left(\mathrm{LM}\left(r_{0}\right), \mathrm{LM}\left(f_{1}\right)\right)} \cdot f_{1}\right) \\
& =\frac{1}{4} \cdot\left(\frac{4 x^{3}}{x^{3}} \cdot\left(x^{4}+y^{4}+z^{4}+x y z\right)-\frac{x^{4}}{x^{3}} \cdot\left(4 x^{3}+y z\right)=\right. \\
& =\frac{1}{4} \cdot\left(4\left(x^{4}+y^{4}+z^{4}+x y z\right)-x \cdot\left(4 x^{3}+y z\right)\right) \\
& =\frac{1}{4} \cdot\left(4\left(y^{4}+z^{4}+x y z\right)-x y z\right) \\
& =y^{4}+z^{4}+\frac{3}{4} x y z
\end{aligned}
$$

2. Step: $\operatorname{LM}\left(f_{2}\right)=y^{3} \mid y^{4}=\operatorname{LM}\left(r_{1}\right)$.

Set $q_{2}=\frac{\mathbf{L T}\left(r_{1}\right)}{\mathbf{L T}\left(f_{2}\right)}=\frac{1}{4} y$ and

$$
\begin{aligned}
r_{2} & =\frac{\operatorname{spoly}\left(r_{1}, f_{2}\right)}{\mathrm{LC}\left(f_{2}\right)} \\
& =\frac{1}{4} \cdot\left(\frac{4 y^{3}}{g c d\left(y^{4}, y^{3}\right)} \cdot r_{1}-\frac{y^{4}}{g c d\left(y^{4}, y^{3}\right)} \cdot f_{2}\right) \\
& =r_{1}-y \cdot \frac{f_{2}}{4} \\
& =z^{4}+\frac{1}{2} x y z
\end{aligned}
$$

3. Step: $\operatorname{LM}\left(f_{3}\right)=z^{3} \mid z^{4}=\operatorname{LM}\left(r_{2}\right)$

Set $q_{3}=\frac{\operatorname{LT}\left(r_{2}\right)}{\operatorname{LT}\left(f_{3}\right)}=\frac{1}{4} z$ and

$$
\begin{aligned}
r_{3} & =\frac{\operatorname{spoly}\left(r_{2}, f_{3}\right)}{\mathrm{LC}\left(f_{3}\right)} \\
& =\frac{1}{4} \cdot\left(\frac{4 z^{3}}{z^{3}} \cdot r_{2}-\frac{z^{4}}{z^{3}} \cdot f_{3}\right) \\
& =\frac{1}{4} \cdot\left(4\left(z^{4}+\frac{1}{2} x y z\right)-z \cdot\left(4 z^{3}+x y\right)\right) \\
& =\frac{1}{4} x y z
\end{aligned}
$$

4. Step: There remains no f_{i} with $\mathrm{LM}\left(f_{i}\right) \mid \mathrm{LM}\left(r_{3}\right)$, so the algorithm terminates and we obtain:

$$
\begin{aligned}
q_{1} f_{1}+q_{2} f_{2}+q_{3} f_{3}+r_{3} & =\frac{1}{4} x\left(4 x^{3}+y z\right)+\frac{1}{4} y\left(4 y^{3}+x z\right)+\frac{1}{4} z\left(4 z^{3}+x y\right)+\frac{1}{4} x y z \\
& =x^{4}+y^{4}+z^{4}+x y z \\
& =g
\end{aligned}
$$

