Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 6

Exercise 1.

For $R = \mathbb{Q}[x, y, z]$ compute spoly $(xy - y, 2x^2 + yz)$ and spoly $(xy - y, -y^3 - 2y)$ with respect to $>_{lp}$.

Exercise 2.

A polynomial $f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \underline{x}^{\alpha} \in K[x_1, \dots, x_n]$ is called *homogeneous* if for all α with $a_{\alpha} \neq 0$ the absolute value $|\alpha|$ is constant.

An ideal $I \subset K[x_1, \ldots, x_n]$ is called homogeneous if it is generated by a set of homogeneous polynomials.

Let I be a homogeneous ideal in $K[\underline{x}]$. Show that the degree reverse lexicographic ordering $>_{dp}$ satisfies the property:

 $L(I+\langle x_n^d\rangle)=L(I)+\langle x_n^d\rangle \text{ for any } d\geq 1.$

Hint: Show that if I is homogeneous, we only have to consider homogeneous polynomials, e.g. $L(I) = \langle LM(f) | f \in I, f \text{ homogeneous} \rangle$.

You are allowed to use that the sum of homogeneous ideals is again a homogeneous ideal.