Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 6

Exercise 1.

For $R=\mathbb{Q}[x, y, z]$ compute $\operatorname{spoly}\left(x y-y, 2 x^{2}+y z\right)$ and $\operatorname{spoly}\left(x y-y,-y^{3}-2 y\right)$ with respect to $>_{l p}$.

Exercise 2.

A polynomial $f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \underline{x}^{\alpha} \in K\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous if for all α with $a_{\alpha} \neq 0$ the absolute value $|\alpha|$ is constant.
An ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous if it is generated by a set of homogeneous polynomials.
Let I be a homogeneous ideal in $K[\underline{x}]$. Show that the degree reverse lexicographic ordering $>_{d p}$ satisfies the property:

$$
L\left(I+\left\langle x_{n}^{d}\right\rangle\right)=L(I)+\left\langle x_{n}^{d}\right\rangle \text { for any } d \geq 1
$$

Hint: Show that if I is homogeneous, we only have to consider homogeneous polynomials, e.g. $L(I)=\langle L M(f)| f \in$ I, f homogeneous \rangle.
You are allowed to use that the sum of homogeneous ideals is again a homogeneous ideal.

