Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 10

Exercise 1.

Let X be an affine variety and let $Y \subset X$ be closed. Endow Y with the subspace topology. Show: The inclusion map $i: Y \hookrightarrow X$ is a morphism of spaces with functions, $i^{*}\left(\mathcal{O}_{X}(X)\right)=\mathcal{O}_{Y}(Y)$ and $\operatorname{ker}\left(i^{*}\right)=I_{X}(Y)$.

This finishes the proof of Lemma 3.3.8.
Solution: The inclusion map is the identity on each coordinate, thus it is a continuous map. Let $V \subset X$ be open, $h \in \mathcal{O}_{X}(V)$. We have to show that $h \circ i \in \mathcal{O}_{Y}\left(i^{-1}(V)\right)$.
We know $i^{-1}(V)=V \cap Y$ and $h \circ i=h_{\left.\right|_{Y}}$.
Since Y is endowed with the subspace topology, and $V \subset X$ open, we know that $V \cap Y$ is open. Moreover, we know that h is regular on V, therefore h is regular on $V \cap Y \subset V$ and so $h_{\left.\right|_{Y}}$ is regular on $V \cap Y$.

The remaining claims of Lemma 3.3.8:

$$
i^{*}\left(\mathcal{O}_{X}(X)\right)=\mathcal{O}_{Y}(Y)
$$

This is true, since i is injective, and since $i \mapsto i^{*}$ is a contravariant functor, i^{*} is surjective.

$$
\operatorname{ker}\left(i^{*}\right)=I_{X}(Y)
$$

This holds, because

$$
\begin{aligned}
f \in \operatorname{ker}\left(i^{*}\right) & \Leftrightarrow f \circ i=0 \\
& \Leftrightarrow f_{\left.\right|_{Y}}=0 \\
& \Leftrightarrow f_{\left.\right|_{Y}} \text { is in the vanishing ideal of } \mathrm{Y} \text { in } \mathrm{X} \\
& \Leftrightarrow f_{\left.\right|_{Y}} \in I_{X}(Y) \subset K[X]=\mathcal{O}_{X}(X) .
\end{aligned}
$$

Exercise 2.

Let K be an algebraically closed field.
Prove: The line L described by $3 x+4 y=7$ in \mathbb{K}^{2} is isomorphic to \mathbb{K}^{1}.
Solution: We know $K[L] \cong K[x, y] /\langle 3 x+4 y-7\rangle$. Furthermore, we see that $K[x, y] /\langle 3 x+4 y-7\rangle \cong K[x] \cong K\left[\mathbb{A}_{K}^{1}\right]$ by considering the map $K[x, y] \rightarrow K[x], f(x, y) \mapsto f\left(x, \frac{(-3 x+7)}{4}\right)$ which is surjective and satisfies $\langle 3 x+4 y-7\rangle \subset$ ker (since $\bar{y}=\frac{\overline{(-3 x+7)}}{4}$). Now $\langle 3 x+4 y-7\rangle \supset$ ker, since for $f \in$ ker we know that $f_{\left.\right|_{L}}$ vanishes, so $L \subset V(f)$ which implies that $f \in\langle 3 x+4 y-7\rangle$. So we can apply the homomorphism theorem and obtain $K[L] \cong K[x, y] /\langle 3 x+4 y-7\rangle \cong$ $K[x] \cong K\left[\mathbb{A}_{K}^{1}\right]$.
That choice of congruence means that we've chosen the isomorphism $\mathbb{A}^{1} \rightarrow L$ given by $(x) \mapsto\left(x, \frac{(-3 x+7)}{4}\right)$, or the reverse morphism $L \rightarrow \mathbb{A}^{1}$ given by $(x, y) \mapsto x$.

