Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 12

Exercise 1.

Let K be an algebraically closed field. Let X be an affine variety. Draws There is a comparised bijection $Mar(X, K^n) \to O(X)^n$ (comparison) (comparison)

Prove: There is a canonical bijection $Mor(X, K^n) \to O(X)^n$, $\varphi \mapsto (\varphi_1, \dots, \varphi_n)$.

Solution: We know from exercise sheet 10, that $\mathcal{O}(X) = Mor(X, K)$. It follows that every element $(\phi_1, \ldots, \phi_n) \in \mathcal{O}(X)^n$ gives rise to a morphism $X \to K^n$ via $x \mapsto (\phi_1(x), \ldots, \phi_n(x))$.

In the other direction every morphism $X \to K^n$ gives rise to a morphism $X \to K$ (which is an element in $\mathcal{O}(X)$) by combining it with a coordinate projection $\pi_i : K^n \to K, (a_1, ..., a_n) \to a_i$.

Thus, we obtain an element in $\mathcal{O}(X)^n$ from $\phi \in Mor(X, K^n)$ via $\phi \mapsto (\pi_1 \circ \phi, \dots, \pi_n \circ \phi)$.

These two operations are inverse to each other thus providing the bijection.