Prof. Hannah Markwig
Alheydis Geiger

Introduction to Commutative Algebra and algebraic Geometry face-to-face Exercise to Sheet 4

Exercise 1.

Determine the irreducible components of $V\left(X^{2}-Y Z, X Z-X\right) \subset \mathbb{C}^{3}$.

Solution:

$$
\begin{gathered}
X Z-X=0 \\
\Rightarrow X=0 \text { or } Z=1
\end{gathered}
$$

Since additionally $X^{2}-Y Z=0$, we have $Y Z=0$ for $X=0$, and $X^{2}-Y=0$ for $Z=1$. So

$$
V\left(X^{2}-Y Z, X Z-Z\right)=V(X, Y) \cup V(X, Z) \cup V\left(Z-1, X^{2}-Y\right)
$$

$I(V(X, Y))=\langle X, Y\rangle$ and $I(V(X, Z))=\langle X, Z\rangle$ are prime. Also $I\left(V\left(Z-1, X^{2}-Y\right)\right)=\left\langle Z-1, X^{2}-Y\right\rangle$ is prime, since $K[X, Y, Z] /\left\langle Z-1, X^{2}-Y\right\rangle \cong K[X, Y] /\left\langle X^{2}-Y\right\rangle$ is an integer domain (since $X^{2}-Y$ is irreducible and thus prime). So we have found the decomposition of the irreducible components.

