Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 5

Exercise 1.

Let $f=x^{2} y^{3}-z+3 x^{2} z+x y-10 y^{2} z+x z^{2}, g=x^{4} z^{2}+7 y^{3} z+z^{2}-3 x y+5 \in K[x, y, z]$. Write f, g in the
a) lexicographic order with $z>y>x$.
b) degree reverse lexicographic order with $y>z>x$.
c) the weighted degree reverse lexicographic order given by $w=(2,-1,1)$ for which the first coordinate corresponds to x, the second to y and the third to z (i.e. $x_{1}=x, x_{2}=y, x_{3}=z$).

Solution:

a) We have to order the monomials appearing in f by the lexicographic order with $z>y>x$:

$$
z^{2} x>_{l p} z y^{2}>_{l p} z x^{2}>_{l p} z>_{l p} y^{3} x^{2}>_{l p} y x
$$

so $f=z^{2} x-10 y^{2} z+3 z x^{2}-z+y^{3} x^{2}+y x$. For g we obtain

$$
z^{2} x^{4}>_{l p} z^{2}>_{l p} z y^{3}>_{l p} y x>_{l p} 1
$$

so $g=z^{2} x^{4}+z^{2}+7 z y^{3}-3 y x+5$.
b) We have to order the monomials appearing in f by the reverse lexicographic order with $y>z>x$:

$$
y^{3} x^{2}>_{d p} y^{2} z>_{d p} z^{2} x>_{d p} z x^{2}>_{d p} y x>_{d p} z
$$

so $f=y^{3} x^{2}-10 y^{2} z+z^{2} x+3 z x^{2}+y x-z$. For g we obtain

$$
z^{2} x^{4}>_{d p} y^{3} z>_{d p} z^{2}>_{d p} y x>_{d p} 1
$$

so $g=z^{2} x^{4}+7 z y^{3}+z^{2}-3 y x+5$.
c) We have to order the monomials appearing in f by the weighted degree reverse lexicographic order given by $w=(2,-1,1)$ for which the first coordinate corresponds to x, the second to y and the third to z :

$$
\begin{aligned}
\operatorname{deg}_{w}\left(x z^{2}\right) & =2+2=4 \\
\operatorname{deg}_{w}\left(y^{2} z\right) & =-2+1=-1 \\
\operatorname{deg}_{w}\left(x^{2} z\right) & =4+1=5 \\
\operatorname{deg}_{w}(z) & =1 \\
\operatorname{deg}_{w}\left(x^{2} y^{3}\right) & =4-3=1 \\
\operatorname{deg}_{w}(x y) & =2-1=1
\end{aligned}
$$

For the monomials of the same degree we get with the weighted degree reverse lexicographic ordering: $x y>_{w p(w)}$ $x^{2} y^{3}>_{w p(w)} z$. So it follows that

$$
x^{2} z>_{w p(w)} x z^{2}>_{w p(w)} x y>_{w p(w)} x^{2} y^{3}>_{w p(w)} z>_{w p(w)} y^{2} z
$$

so $f=3 z x^{2}+z^{2} x+y x+y^{3} x^{2}-z-10 y^{2} z$. For g we compute:

$$
\begin{aligned}
\operatorname{deg}_{w}\left(x^{4} z^{2}\right) & =8+2=10 \\
\operatorname{deg}_{w}\left(y^{3} z\right) & =-3+1=-2 \\
\operatorname{deg}_{w}\left(z^{2}\right) & =2 \\
\operatorname{deg}_{w}(x y) & =2-1=1
\end{aligned}
$$

Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 5

So it follows that

$$
x^{4} z^{2}>_{w p(w)} z^{2}>_{w p(w)} x y>_{w p(w)} y^{3} z
$$

so $g=x^{4} z^{2}+z^{2}-3 x y+5+7 y^{3} z$.

Exercise 2.

Matrices $A \in \mathrm{GL}(n, \mathbb{R})$ with real entries can be used to obtain a monomial ordering on Mon ${ }_{n}$ by setting

$$
x^{\alpha}>_{A} x^{\beta}: \Leftrightarrow A \alpha>A \beta
$$

where $>$ on the right hand side is the lexicographical ordering on \mathbb{R}^{n}.
Find the matrices that induce the lexicographic and the degree reverse lexicographic ordering on Mon ${ }_{n}$ with $X_{1}>$ $\ldots>X_{n}$.

Solution: The lexicographic ordering $>$ on \mathbb{R}^{n} means that $\alpha>\beta \Leftrightarrow \exists k$ s.t. $\alpha_{1}=\beta_{1}, \ldots \alpha_{k-1}=\beta_{k-1}$ and $\alpha_{k}>\beta_{k}$.
It follows that the matrix ordering induced by $A=\mathbf{1}_{n}$ induces the lexicographic ordering.
For the degree reverse lexicographic ordering we need a matrix A such that $\underline{x}^{\alpha}>_{d p} \underline{x}^{\beta}$ if and only if $A \alpha>A \beta$ in the lexicographic ordering of \mathbb{R}^{n}.
We have $\underline{x}^{\alpha}>_{d p} \underline{x}^{\beta}$ if and only if $|\alpha|>|\beta|$ or $|\alpha|=|\beta|$ and there exists k s.t. $\alpha_{n}=\beta_{n}, \ldots \alpha_{k+1}=\beta_{k+1}$ and $\alpha_{k}<\beta_{k}$.
We observe, that we never need to compare the first entries of α and β, since if $|\alpha|=|\beta|$ and $\alpha_{n}=\beta_{n}, \ldots, \alpha_{2}=\beta_{2}$ it also implies that $\alpha_{1}=\beta_{1}$.
So to compare in the lexicographic order the vector $A \alpha$ needs to contain $|\alpha|$ as first entry and needs to filled with $-\alpha_{n}, \ldots,-\alpha_{2}$, since the degree reverse lexicographic order $>_{d p}$ means that if $|\alpha|=|\beta|$ and there exists k s.t. $\alpha_{n}=\beta_{n}, \ldots \alpha_{k+1}=\beta_{k+1}$ and $\alpha_{k}<\beta_{k}$ we have $\underline{x}^{\alpha}>_{d p} \underline{x}^{\beta}$. Therefore the matrix A we are looking for has an anti-diagonal filled with -1 while the 1-th row to the matrix is filled with ones:

$$
A=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
0 & 0 & \cdots & 0 & -1 \\
0 & 0 & \cdots & -1 & 0 \\
\vdots & & . & & \vdots \\
0 & -1 & \cdots & 0 & 0
\end{array}\right) \in \operatorname{GL}(n, K)
$$

